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Temporal Data Pooling With Meta-Initialization for
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Abstract—The growth of advanced metering infrastructure
(AMI) deployment has enabled intelligent power control and
management at the customer level; Highly accurate individual
short-term load forecasting is crucial for this precise control
per customer. Recently, deep learning has been widely adopted
to improve forecasting accuracy. However, training an individ-
ual deep network (local training) has overfitting issues due to
data paucity per customer. Thus, a pooling scheme has been
introduced to augment a training dataset by batching several
customers’ data. Nevertheless, there is room for existing pooling
approaches to further improve accuracy by considering distribu-
tion heterogeneity within a customer dataset. In addition, their
static pool assignment only with a customer’s training dataset
may cause accuracy degradation under concept drift in serving
time. To overcome these, we propose a Temporal Data Pooling
(TDP) that constructs data pools at the data sample level with a
novel distribution inference method and theoretical analysis. It
allows the most probable forecasting model to serve predictions
while resolving data shortage issues in local training. The TDP
outperforms the other six competing methods for point and prob-
abilistic forecasting; it shows robust accuracy under concept
drift. Moreover, it demonstrates superior accuracy for unseen
customers without additional training, proving its scalability.

Index Terms—Temporal data pooling, pooling, load pro-
filing, individual short-term load forecasting, concept drift,
meta-initialization.

I. INTRODUCTION

FOR A highly accurate smart grid service, precise short-
term load forecasting that predicts load values in minutes

or days is crucial [1], [2], [3], [4]. In particular, ‘indi-
vidual’ short-term load forecasting (ISTLF), conducted at
the customer level, is extremely demanding for customer-
specific services, such as peak load shaving and demand-side
response [5], [6]. The ISTLF was made possible by the
massive deployment of Advanced Metering Infrastructures
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(AMIs). An AMI meter, installed at each building, periodically
measures the energy consumption of the building and transmits
it to the Cloud environment managed by smart grid operators,
where the data is processed for various energy services.

However, unlike aggregated load forecasting, which is rel-
atively accurate thanks to its regular pattern [7], [8], [9], the
ISTLF is more challenging because an individual profile con-
tains non-trivial uncertainty and has volatile properties [10].
Therefore, it is required to study sophisticated technologies;
Deep learning has shed light on the precise ISTLF for its abil-
ity to learn non-linear features. Therefore, deep networks have
been actively explored as the solution to the ISTLF [11], [12].

When applying the deep network to ISTLF for multiple
customers, how constructing a forecasting network is an addi-
tional challenge [13]. Distribution of individual loads varies
by the customer’s lifestyle or surroundings, which implies the
ISTLF for different customers might be statistically disparate
tasks [12]. Thus, how to construct a dataset affects the accu-
racy of deep network-based ISTLF, for its training follows
empirical risk minimization. As the most straightforward way,
it has been taken for granted to train a single network for a
customer, known as the one-to-one method (or local) [5], [14].

However, this local framework may suffer from an over-
fitting problem due to the insufficient dataset for each cus-
tomer [15]. In addition, its scalability is low, requiring the
same number of networks as the customer. As a solution to
this, training a single network for all customers (so-called,
one-to-all, or global) has recently been spotlighted [16], but
with the global framework, the practitioner should increase
the model complexity to incorporate all conflicted task distri-
butions, increasing model size.

Thus, as the moderation between local and global, a novel
pooling scheme was proposed [17], [18], [19], [20], [21],
which trains a model for a set of similar customers by batch-
ing training datasets of each group. By sharing one model
with similar customers, the pooling-based approaches solve
the data scarcity problem and improve resource efficiency
with high serving throughput [13]. However, since the pool-
ing schemes consider deviation between customers only, there
is room to further improve forecasting accuracy through dis-
tribution matching at a sample level. They assign the whole
data samples from a customer into one chamber, which ignores
distribution deviation among time-series samples within a cus-
tomer dataset [14]. Moreover, since they assign only a single
network to a customer based on its training dataset, they are
vulnerable to concept drift, where the distribution is changed
at the serving time [22], [23].
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Fig. 1. Conceptual figure to compare customer data pooling (CDP), which
is existing pooling method to batch across customer dataset, and the TDP
(proposed). Each data pool is used in training a forecasting model. For the
CDP, forecasting model for a customer m is assigned according to where the
customer’s dataset is allocated in the pool. On the other hand, the TDP frame-
work dynamically allocate the best forecasting model from input sequential
vector.

To remedy this, we propose a Temporal Data Pooling (TDP)
framework that adopts the time-series sample-level clustering
to pooling. It analyzes every sliding window samples in all
customer datasets to reduce sample deviation within a pool
rather than simply lumping similar customers’ datasets. For
clarification, Fig. 1 compares the existing pooling schemes
with TDP; existing pooling approaches only reconstruct data
pools along the customer axis. Meanwhile, TDP redefines fore-
casting tasks by analyzing every data sample over time in all
customers’ datasets, i.e., taking both customer and temporal
axes into account. By doing so, TDP can mitigate distribu-
tion deviation within a pool while also taking advantage of
pooling.

Furthermore, we present a theoretical rationale for the
TDP by comparing it with the existing pooling methods with
the statistical learning framework. It supports our motiva-
tion to combine time series sample clustering and dataset
batching across multiple customers. To incarnate the TDP
framework, we present two modules. First, we propose a vari-
ational inference-based recurrent deep embedding (VaRDE)
method for precise time-series sample clustering. Second,
meta-initialization [24] is adopted to compensate for possible
pool size deviation problems. This end-to-end TDP framework
contemplates both non-stationary property in an individual
load and the data paucity issue of local ISTLF based on
the generalization bound. This paper extends our precedent
study [13]; we provide further empirical study and theoretical
analysis. Here is the summary of our contributions.
• We analyze the limitation of existing pooling methods in

terms of generalization bound and revisit the sample-level
clustering as a solution for distribution-aware pooling.

• As a part of the TDP framework, we propose a VaRDE
network tailored to stochastic time-series sample cluster-
ing and present an analysis of meta-initialization.

• We provide an ablation study to validate each component
in the end-to-end TDP framework.

II. RELATED WORKS

A. Individual Short-Term Load Forecasting

Load forecasting is the basis for optimized decision-making,
such as purchasing electricity in the smart grid. In particu-
lar, individual load forecasting, computed per customer, can
be used to build a smart home energy management system
combined with IoT [25] or provide customized services such
as transactive systems [26], [27]. Load forecasting is catego-
rized into short-term, medium-term, and long-term according
to the time interval from input to the forecasting target. Among
the categories, short-term load forecasting predicts values after
several minutes to several days. It is challenging to obtain high
accuracy for short-term loads by an individual customer due to
volatile properties and high uncertainties [17]. Therefore, some
studies were conducted mainly on aggregate load forecasting
to mitigate the impact of uncertainty [28], [29]. Following
the widespread deployment of AMIs, studies based on the
characteristics of each smart meter revealed higher accuracy
in predicting aggregated load. Zhang et al. [30] used sup-
port vector machine models corresponding to each pattern
through hierarchical clustering from various attributes of indi-
vidual customers and predicted the final accumulative load.
Quilumba et al. [31] also leveraged smart meter data to
improve aggregated load forecasting performance by building
neural networks for each group formed based on the simi-
larity of customers’ consumption patterns. Stephen et al. [8]
found that daily load contains sub-profiles within customer
data. Based on that, they attempt to improve the aggregated
load forecasting accuracy by predicting the next day’s sub-
profile with transition probability between daily sub-profiles.
However, because they remained focused on aggregate load
forecasting, they did not evaluate the forecasting accuracy for
individual loads.

Individual short-term load forecasting is more challeng-
ing than aggregated load forecasting because it is fought
with uncertainty and lacks general patterns. However, deep
networks, which can learn non-linear features, have the poten-
tial to solve this problem by learning uncertainty features
shared among customers [17]. Especially, recurrent neu-
ral network (RNN) is good at learning sequential features;
Kong et al. [6] proposed individual load forecasting based on
a long-term short-term (LSTM) network. The LSTM, which
was trained for each customer, performed better than the
previous schemes in the ISTLF. Kim and Cho [32] proposed
the CNN-LSTM architecture for forecasting energy consump-
tion. Chen et al. [33] proposed a deep residual network-based
short-term load forecasting technique. Probabilistic forecasting
is necessary due to the individual load profile’s stochastic fea-
tures and application requirements. Wang et al. [34] proposed
probabilistic forecasting using pinball loss, and Yang et al. [18]
proposed Monte-Carlo (MC) dropout [35] as a Bayesian deep
network approximation for probabilistic forecasting.

B. Pooling-Based Individual Short-Term Load Forecasting

The pooling technique resolves the overfitting issue of con-
ventional local ISTLF caused by the lack of data for each
target customer. Furthermore, it is easy to implement and
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reduces the number of models while mitigating the issue.
Shi et al. [17] first proposed the novel pooling concept, which
batches two or more customer data sets into one training
dataset for a single network. By doing so, pooling-based
ISTLF constructs fewer deep learning models than the total
number of customers, allowing each network’s model com-
plexity to increase for better generalization. However, the
authors did not severely care about grouping customers but
used random pooling, configuring a pool without considering
customer data characteristics. This random pooling may rather
degrade accuracy due to distribution collision in one pool [19].

Its downstream studies have been vigorously conducted for
sophisticated pooling. They commonly focused on finding
similar customers using clustering. Yang et al. [18] applied
agglomerative hierarchical clustering to customer profiles,
where a customer profile is constructed by averaging every
weak load of the customer. Zang et al. [20] used mutual
information for pooling. Rather than grouping all customers,
they seek customers who have high mutual information with
a target customer. Han et al. [19] performed pooling using
K-Means clustering. By clustering customers’ residential load
profiles, they performed normalization on one pool and learned
the LSTM network. In addition, several clustering methods of
load profiling [36], [37] can be directly applied to pooling,
allowing similar customers to make a colony by classifying
customers’ profiles. As they allocate the entire data collected
from one customer into one chamber [38], they can be seen as
a sort of customer pooling. Although these sophisticated clus-
tering techniques have improved the efficiency of pooling, they
are still confined to batching inter-customer datasets, lacking
intra-customer analysis.

C. Time-Series Clustering in Load Forecasting

One of the main obstacles of ISTLF is the change in the
data distribution within the customer, that is, the non-stationary
feature. Local ISTLF studies have fought with this time series
change, from seasonal effect analysis to daily pattern change.
Bedi and Toshniwal [39] proposed clustering time-series data
to look up similar months before training forecasting networks.
Accordingly, each trained model can cope with different char-
acteristics of seasonal effects. Still, their clustering process
is constrained to finding similar months only, which can not
cover all sequences of inputs at a fine-grained level.

Clustering for daily profiles is also explored to
incorporate daily change in forecasting. For example,
Teeraratkul et al. [40] proposed a shape-based clustering to
find the best load pattern for the next day by translating the
historical profiles to the sequence of cluster means. Similarly,
Stephen et al. [8] split a customer’s load profiles into sub-
profiles and constructed groups across multiple customers’
sub-profiles to gather more information on possible load
profiles. However, they are limited to applying to general
deep learning-based ISTLF, for they work with the transition
probability model. In addition, studies have explored the daily
profile clustering result in deep network-based forecasting.
Hsaio [14] proposed time-series sample-level clustering to
cope with distribution change within a customer. To this

end, multiple networks are trained corresponding to clusters
constructed from an individual customer. However, since one
customer’s dataset is split to form multiple sub-datasets, each
network inevitably suffers from a severe data shortage. Above
all, this local strategy trains more models than the number
of customers, reducing scalability. On the other hand, our
TDP framework takes temporal changes and batching across
customers simultaneously, allowing adaptive responses to
distribution changes while resolving data paucity issues.

III. PROBLEM FORMULATION

A. Notations and Assumptions

In this subsection, we define some notations used for the
problem description. Here, we posit a situation where M cus-
tomers are enrolled in the system, so their training datasets
S := {Sm}Mm=1 are collected beforehand. From the total training
set S, we aim to provide individual short-term load forecasting
to more than M customers with C (≤ M) models {hk}Ck=1 for
resource-efficient serving while mitigating concept drift.

Let xm
t be the load value of customer m at time t, which

follows the load data distribution of customer m at time t,
i.e., xm

t ∼ pm
t (x). Then, a short-term load forecasting model is

defined as h : X → Y . Here, h takes xm
t = [xm

t−L+1, . . . , xm
t ] ∈

X ⊂ R
L as an input, which is a look-back vector from time

step t of customer m with L successive past values; the input
sequence vectors x are constructed by the sliding window
method [22]. Then, the ISTLF model returns a single value
ym

t (= x̂m
t+T) ∈ Y ⊂ R after the T time step from the current

time t. For the hypothesis finding, we denote loss function as
L : Y × Y → R

+. Especially, we pick the squared loss that
is L2(y, y′) = |y− y′|2. For the simplicity of the analysis, we
assume the loss function is bounded by one. We assume that
the training datasets for M customers are given prior; each
customer m’s training dataset Sm is given as

Sm =
{(

xm
t , ym

t

)∣∣∣(xm
t , ym

t

) ∼ pm
t (x, y), 0 ≤ t ≤ Ttr

m

}
,

where Ttr
m denotes the maximum value of the relative time

index for customer m’s training dataset, corresponding to the
number of data samples in Sm.

In order to resolve the overfitting issue caused by data
scarcity, pooling techniques construct C training sets by batch-
ing training samples in S. We denote the kth sub-dataset as
a data pool Dk. The total data pools {Dk}Ck=1 satisfy the
following conditions:

∪C
k=1Dk = ∪M

m=1Sm, Di ∩Dj = ∅, ∀i �= j.

From the data pools, C forecasting models {h(·;Wk)}Ck=1 are
trained, where each model h(·;Wc) is trained with its corre-
sponding data pool Dc through empirical risk minimization;
Wc denotes the weight parameter for pool c.

In the pooling-based ISTLF, a data pool represents the train-
ing dataset of the corresponding forecasting task. Thus, the
way we construct data pools shall determine task distribu-
tions. In terms of this, pooling-based ISTLF’s performance
is determined by how the task distribution is defined and the
quality of its data pool, e.g., whether data samples within a
pool satisfy i.i.d. conditions. Therefore, we resolve this data
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pooling problem by identifying C task distributions that can
describe the total training dataset and construct the data pool
on the distributions. However, a task distribution of the ISTLF
model, i.e., joint distribution between input and output, can
not be accessible in serving time. Thereby, building the data
pools based on the joint distribution is impractical. Instead,
we presume that input distribution can approximate the joint
distribution and focus on finding C conditional distributions of
input. This assumption is plausible in that this paper focuses
on short-term forecasting.

Assumption 1: The task distribution of an individual short-
term load forecasting, i.e., joint distribution p(xt, yt), can be
approximated with p(xt).

Assumption 2: C distributions exist in the whole training
dataset S; Let p(x|c) be the cth distribution. For the sake of
simplicity, we abbreviate p(x|c) as pc.

B. Limitation of Existing Pooling-Based ISTLF Methods

1) Limited Concern on the Concept Drift: Most existing
pooling-based ISTLF methods [17], [18], [19], [20] commonly
batch datasets over the customer axis (Fig. 1). Hence we term
them Customer Data Pooling (CDP). For the existing CDP,
an ith data pool is constructed with the following batching
rule:

DCDP
i =

⋃

m∈{m|ACDP(Sm)=i}
Sm, (1)

where ACDP is a clustering algorithm to assign customer m
into a specific pool by taking the customer’s dataset Sm as an
input. The algorithm can be random [17], k-Means [19], or
agglomerative hierarchical clustering [18]. The CDP method
assigns customer m into a pool c∗ based on analyzing the
customer’s training dataset c∗ := ACDP(Sm), which implies
that it decides the pool of customer m at the training
cycle. This suggests that the forecasting error of hc∗(xm

k )

may increase at a serving time k ≥ Ttr
m due to concept

drift, i.e., pm
t (x) �= pm

k (x), t ≤ Ttr
m [22], [23]. Therefore,

we need a workaround to handle distribution change at
serving time.

2) Pooling Method for Distribution Matching Is Required:
In addition, a pool’s distribution discrepancy may raise the
CDP’s generalization error. Because the CDP studies usually
assume that one customer’s training dataset has an identical
distribution, they allocate a pool for the whole samples of one
customer’s dataset, where the pool is chosen using a repre-
sentative profile [18]. However, because of the non-stationary
property of individual load, it cannot be guaranteed that all
training samples of the same customer will follow the same
distribution, but a customer’s load profiles can be described
with different distributions over time [8]. Therefore, it is more
likely that customer m’s training set consists of data points
from different distributions along the temporal axis.

Assumption 3: A customer m’s dataset Sm con-
sists of non-i.i.d. data which are factorized into
∪C

c=1Sm,c, where Sm,c is a sub-set of Sm follow-
ing distribution pc, i.e., Sm,c = {(x, y) |x ∼ pc,

(x, y) ∈ Sm}.

From Assumption 3, we can approximate a customer m’s
distribution p̂m as a weighted summation of C distributions,

p̂m =
C∑

c=1

|Sm,c|∑C
k=1 |Sm,k|

· pc =
C∑

c=1

|Sm,c|
|Sm| · pc. (2)

Using (1) and (2), we can draw an empirical distribution of
the ith CDP pool DCDP

i ’s distribution as

p̂CDP
i =

C∑
c=1

∑
m∈CDPi

|Sm,c|∑
m∈CDPi

|Sm| · pc =
C∑

c=1

�̄CDP
i,c · pc,

where CDPi = {m|ACDP(Sm) = i}, and �̄i = [�̄CDP
i,c ]C

c=1 is a
simplex over C.

With these representations, we can analyze the performance
of the short-term load forecasting model trained with the
CDP data pools. Let hp is a minimizer with respect to dis-
tribution p, i.e., hp = arg minh∈HRp(h), and Rp(h) is an
expected risk of given hypothesis for given distribution p, i.e.,
E(x,y)∼p[L(h(x), y)]. Let ĥCDP

i as an empirical risk minimizer
with respect to distribution p̂CDP

i . Based on Assumption 1 and
statistical learning theory [21], [41], for any δ > 0, the gen-
eralization error of ĥCDP

i for input following pc satisfies the
condition below with a probability of at least 1− δ:

Rpc

(
ĥCDP

i

)
−Rpc

(
hpc

)

= O
(√

d + log 1/δ√
|DCDP

i |

)
+ discH

(
p̂CDP

i , pc

)
, (3)

where d denotes the pseudo dimension of the hypothesis class
H; disc(p, q) represents the discrepancy between the given two
distributions, i.e., discH(p, q) = maxh∈H |Rp(h)−Rq(h)|.

Eq. (3) demonstrates that the CDP reduces the upper bound
of its generalization error compared to the local’s, for it
increases the number of training samples, i.e., |DCDP

i | =∑
m∈CDPi

|Sm| ≥ |Sm|. However, if the distribution discrep-
ancy disc(pc, pCDP

i ) is dominant, it may increase the risk of
CDP-based forecasting. For example, assume that a customer
M suffers from concept drift after training — the new input
xM

t follows pC, but �̄CDP
ACDP(SM),C

is zero. Then, the discrepancy

term discH(pC, pCDP
M ) must be greater than zero. Moreover,

even in the case of �̄CDP
ACDP(SM),C

> 0, it is not guaranteed
that the discrepancy term is zero. Therefore, we should con-
sider dynamic pool assignment and distribution discrepancies
within a pool to train ISTLF models with low expected risk.
To this end, we propose a new pooling framework consid-
ering distribution changes over time and a novel clustering
method based on a probabilistic model with latent embedding
and distribution inference.

IV. TEMPORAL DATA POOLING FRAMEWORK WITH

META-INITIALIZATION

A. Temporal Data Pooling

As described in the previous section, removing the discrep-
ancy term in Eq. (3) tightens the error bound of the ISTLF.
To this end, we construct each training data pool with samples
following the same distribution and assign the most likely pool
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to each forecasting input on the fly, namely TDP. Specifically,
the TDP breaks up all data in S and reconstructs them into new
data pools based on each data distribution instead of batching
training set {Sm}Mm=1 across customer index m only. Since it
batches along both the customer m and the temporal t axes, we
call this Temporal Data pooling. Fig. 1 demonstrates how the
CDP and the TDP work differently in data pool construction.
In concrete, we can define the temporal data pool as follows.

Definition 1 (Temporal Data Pool): From given multiple
customers’ datasets S := ∪m∈[M]Sm, Temporal Data Pool DTDP

i
(i ∈ [C]) is defined as

DTDP
i =

{
(x, y)

∣∣∣p(x) = pi and (x, y) ∈ S
}
. (4)

By Definition 1, the cth temporal data pool is represented
with DTDP

c = ∪M
m=1Sm,c, and its distribution p̂TDP

c is pc. After
this pool construction, C forecasting models are trained with
each corresponding data pool {DTDP

i }Ci=1. Let ĥTDP
i denote

a minimizer with respect to distribution p̂TDP
i minimizer of

pool i. Then, the TDP framework provides forecasting to
input x with the most probable forecasting model ĥTDP

c∗ , where
c∗ = arg maxc∈[C] p(c|x). Since the TDP framework allocates
a forecasting model only based on the current input distri-
bution, it can react to distribution change. Therefore, if any
target input xt follows distribution among {pk}Ck=1, the TDP
can return accurate forecasting results with at least proba-
bility. Moreover, Definition 1 allows pool samples to follow
the same distribution, reducing the discrepancy term. Thus, if
Assumption 4 holds, it is guaranteed that the TDP has a lower
generalization error than the CDP.

Assumption 4: The size of every data pool for TDP and
CDP are the same, i.e., |DTDP

c | = |DCDP
i | ∀c ∈ [C], i ∈ [N],

where N is the total number of data pools of the CDP.
Lemma 1: According to Assumptions 2 and 4, the TDP pro-

vides a customer m with a more accurate ISTLF result than
the CDP, for any δ > 0 with the probability of at least 1− δ,
where its input xm

t follows any distribution pc in {pc}Cc=1.
Proof of Lemma 1: Let a customer m’s input xm

t at serv-
ing time t > Ttr

m follows distribution pc ∈ {pi}Ci=1. Then, the
expected error of xm

t for the CDP forecasting model ĥCDP
i is

given as Eq. (3), where m ∈ CDPi. On the one hand, with the
probability of at least 1− δ, the expected error of the TDP’s
minimizer ĥTDP

c∗ for xm
t is given as follows:

Rpc

(
ĥTDP

c∗
)
−Rpc

(
hpc

)

= O
(√

d + log 1/δ√
|DTDP

c∗ |

)
+ discH

(
p̂TDP

c∗ , pc
)
. (5)

Since c∗ = c by Assumption 2 and p̂TDP
c = pc, the latter

discrepancy term disappears. To compare the generalization
accuracy, we compare the upper bound in (3) and (5):

O
(√

d + log 1/δ√
|DCDP

i |

)
+ discH

(
p̂CDP

i , pc

)

= O
(√

d + log 1/δ√
|DTDP

c∗ |

)
+ discH

(
p̂CDP

i , pc

)
by Assumption 4

= O
(√

d + log 1/δ√
|DTDP

c∗ |

)
+ discH

(
�̄CDP

i,c pc +
∑
k �=c

�̄CDP
i,k pk, pc

)

≥ O
(√

d + log 1/δ√
|DTDP

c∗ |

)
+ discH(pc, pc)

Lemma 1 states that the TDP can find a more accu-
rate hypothesis for each temporal data pool from the same
hypothesis class in comparison to the CDP. In addition, if
Assumption 2 holds for drifted input, the TDP can provide
highly accurate ISTLF with ĥc∗ even with the concept drift.
The subsequent parts describe how to put this theoretical
paradigm into practice.

B. Distribution-Inference for Accurate TDP

What makes Lemma 1 feasible is to find C distributions
{pk}Ck=1 satisfying Assumption 2 from the given dataset S. Once
we have identified C distributions, we can build the temporal
data pools. That is to say, we construct the temporal data pool
in the following manner:

D̃TDP
i =

{
(x, y)

∣∣∣ arg max
c∈[C]

p(c|x) = i and (x, y) ∈ S
}

(6)

For realization, we must be able to infer p(c|x). Even though a
direct clustering method can be exploited as a workaround to
infer the pool index c from x, it is hard to cluster them due to
the high dimensionality of load profiles directly [42]. Despite
efforts to cluster after dimension reduction, their consecu-
tive action may lose critical information during the reduction
step [43]. On the contrary, to get the probabilistic model
without losing the essential information, we concurrently find
the hidden features and their clustering information via the
deep embedding technique. For that purpose, we posit a gen-
erative model representing both dimensional reduction and
pool information to determine their joint distribution through
variational inference.

1) Hierarchical Generative Model: We use a hierarchical
Gaussian Mixture Model (GMM) as the generative model
of an individual load vector x inspired by Jiang et al. [44].
Assume that a hidden feature z ∈ R

H affects the input vector
x ∈ R

L; z is also decided by a pool index c. To be con-
crete, c follows a categorical distribution parameterized by
πc, where πc is a simplex describing the prior of every data
pool. The hidden feature z follows the GMM described by the
pool index c. Then, the input data x is generated from z fol-
lowing multi-variate Gaussian distribution. We exploit a deep
learning model to infer the distribution parameters to increase
the expressiveness of distribution for the load profiles. Let
g(·) and ψ denote the generative network and its parameters,
respectively. Then the overall generative model is described as

p(c) = Cat(πc),

p(z|c) = N (z|μc, �c),

pψ(x|z) = N (
x;μx,�x

)
,

where [μx, log�x] = g(z;ψ); the distribution parameters for
z are μc ∈ R

H , �c = σc · I and σc ∈ R
H , respectively. Fig. 2

contains this hierarchical model. The solid lines correspond
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Fig. 2. The probabilistic graphical model of the TDP framework. The solid
and dashed lines denote the generative and inference processes, respectively.
The arrows (links) demonstrate that a variable in the starting point of the
arrow is a condition for the targeting variable. The white and gray circles
present unseen and observed random variables, respectively. The gray dashed
box represents the graphical model for VaRDE. Each rectangle denotes a data
plane with the total number of data presented below.

to this generative relationship. The hierarchical graphical
model indicates that the joint distribution is factorized into
p(x, z, c) = p(c)p(z|c)p(x|z).

2) Inference Model for q(z, c|x): We ultimately find a
joint posterior of c and z based on this generative model.
However, this posterior p(z, c|x) is intractable due to its
denominator p(x). Thus, instead of directly discovering this
true distribution, we find an approximate distribution q(c, z|x)
through optimization, known as variational inference. To waive
this variational inference, we further adopt the mean-field
assumption.

Assumption 5 (Mean-Field Assumption): Latent vector z
and pool index variable c are conditionally independent, which
means the joint conditional distribution is factorized with
respective conditional, i.e., q(z, c|x) = q(z|x)q(c|x).

Assumption 5 makes our variational inference problem
easier to solve by turning it into optimization for each varia-
tional distribution q(z|x) and q(c|x). From there, we complete
the temporal data pool {D̃i}Ci=1 by substituting p(c|x) in
Definition 1 with the optimal q(c|x) taken by the variational
inference. To apply optimization to these approximate distri-
butions, we must select the form of each variational posterior.
We posit that the variational posterior of z is a Gaussian, as
is the generative model of z. The distribution parameters of z
are decided by an inference network f parameterized with φ:

q(z|x) = N (z; f (x;φ)), (7)

where [μz, log�z] = f (x;φ). Finally, we find its optimum for
the variational posterior of c through gradient descent for the
variational inference objective.

3) Network Architecture for Distribution Inference of
Individual Load Input: Before deriving the optimal q(c|x), we
propose the structure of both inference and generative network,
expressing load vector x. Existing variational deep embed-
ding [44] employs simple feed-forward networks for both f
and g. But, the fully connected layers are not ideal for indi-
vidual load data because its clustering does not converge. We
conjecture that this is because the input is time-series data
acquired through a sliding-window method. A fully-connected
network learns features for each neuron without considering
the correlation within an input vector. However, in the case
of input vectors, the relative values within the vector should

be analyzed because not all values within the vectors have
absolute positions but are continuously incoming stream data.
Thus, hidden embedding z should reflect sequential relation-
ships of the input vector. To this end, we propose a new
architecture describing the load data distribution by adopting
Gated Recurrent Units (GRUs) [45] to extract hidden features
from xt and recover its information from z. The inference
network f takes xt as input and infers the mean μz and variance
�z of hidden embedding zt with the following network:

h(k) = GRU
(

xk,h(k−1)
)
,

μz = ReLU
(

Wμh(t) + bμ
)
,

�z = ReLU
(

W�h(t) + b�
)
,

zt ∼ N (
z;μz,�z

)
, (8)

where h(k) is a hidden feature of GRU cell with D dimen-
sion for input point xk. Wμ and W� are both matrices with
D× H dimensions for mean and variance, respectively. With
the additional bias bμ and b� , the parameters μz and �z for
the conditional distribution are returned through a fully con-
nected layer with ReLU activation. In the remainder of this
study, all parameters of the inference network are shortened
with φ.

The generator network g takes zt as input and returns recon-
structed input x̂t, which corresponds to the mean of distribution
p(x) in the following manner:

ĥ
(0) = Wzzt + bz,

x̂0 = ReLU
(

Woutĥ
(0) + bout

)
,

ĥ
(k) = GRU

(
x̂k−1, ĥ

(k−1))
,

x̂k = ReLU
(

Woutĥ
(k) + bout

)
. (9)

Please note that the generative network is iteratively conducted
to get a fully reconstructed vector of xt for L time steps.
Similar to the inference network, to remove abuse of notations,
we abridge all parameters in the generative network into ψ .
Fig. 3 demonstrates the inference and generative network
architecture, which we refer to as variational recurrent deep
embedding (VaRDE).

4) Training VaRDE to Find the Best Approximate Posterior:
The model and network defined so far must be trained in
the direction to describe the optimal q(z, c|x). The optimal
variational distribution denotes the minimizer of the distance
between q(z, c|x) and true distribution p(z, c|x), which can
be represented using Kullback Leibler (KL) divergence as
follows:

min
φ,ψ,{μc,�c,πc}Cc=1

KL
(

qφ(z, c|x)
∣∣∣
∣∣∣pψ (z, c|x)

)
︸ ︷︷ ︸

LOBJ

. (10)

We define the KL divergence term as LOBJ. Then the optimal
variational posterior of c can be found from the objective.

Lemma 2: The optimal approximate posterior of c is given
as the expectation of p(c|z) over the approximate posterior of
z, i.e., q∗(c|x) = Eq(z|x)[p(c|z)].
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Fig. 3. Illustration of VaRDE architecture. Inference network corresponds
to (8), and Generative network works as (9).

Proof of Lemma: The objective LOBJ can be factorized as

LOBJ =
∫

z

∑
c

q(z, c|x)
(

log
q(z, c|x)
p(z, c, x)

+ log p(x)
)

dz

= Eqφ(z,c|x)
[

log
qφ(z, c|x)
pψ(z, c, x)

]
+ log p(x).

⇔ log p(x) = LOBJ(·;φ,ψ)+ Eqφ(z,c|x)
[

log
pψ(z, c, x)
qφ(z, c|x)

]

︸ ︷︷ ︸
LELBO

.

Since p(x) does not depend on the φ and ψ , minimizing
LOBJ can be replaced with maximizing the latter term, usu-
ally called evidence lower bounce (ELBO); it is factorized as
follows [44]:

LELBO =
∫

z

∑
c

qφ(z|x)q(c|x) log
[pψ(x|z)p(z)p(c|z)

qφ(z|x)q(c|x)
]

=
∫

z
qφ(z|x)

[
log

p(x|z)p(z)
qφ(z|x) +

∑
c

q(c|x) log
p(c|x)
q(c|x)

]
dz

= Eqφ(z|x)
[

log
pψ(x|z)p(z)

qφ(z|x) − KL
(

q(c|x)||p(c|z)
)]
.

The optimal approximate posterior of c maximizes the LELBO
when the latter KL divergence is zero, for the KL divergence
always meets non-negative by Jensen’s inequality. Therefore,
KL(q∗(c|x)||Eqφ(z|x)[p(c|z)]) = 0 holds.

From Lemma 2, the optimal form of approximate poste-
rior c can be reformulated into the computational form with
the Monte-Carlo average and reparameterization trick [46].
Finally, we update Temporal Data Pool with this optimal
distribution as follows.

Definition 2 (Temporal Data Pool With Variational
Inference): From given multiple customers’ dataset

S := ∪m∈[M]Sm, D̃i is redefined as
{
(xt, yt)

∣∣∣arg maxc∈[C]q
∗(c|xt,φ

∗,μ∗c ,�∗c
) = i, (xt, yt) ∈ S

}

where

γ ∗c := q∗
(
c|xt,φ,μc,�c

) = 1

S

S∑
s=1

πcp
(

z(s)t |c
)

∑C
c=1 πcp

(
z(s)t |c

) ,

z(s)t = μz + ε(s) � �z, ε(s) ∼ N (0, I), [μz, log�z] = f (xt;φ),
p(z|c) = N (z|μc, �c), and S is the number of samples for
the MC average.

Here, all parameters used in Definition 2 should maximize
LELBO, of which the tractable form is derived with
Assumption 5 and [44, Lemma 1] as follows:

LELBO(xt)

= Eq(zt,c|xt)

[
log p(xt|zt)

]− KL
(

q(zt, c|xt)

∣∣∣
∣∣∣p(zt, c)

)

= −α 1

S

S∑
s=1

L∑
t=1

(
xt − x̂(s)t

)2 +
C∑

c=1

γ ∗c logπc

− 1

2

C∑
c=1

γ ∗c
H∑

h=1

[
log

(
2π�h

c

)
+ �

h
z +

(
μh

z − μh
c

)2

�h
c

]

+ 1

2

H∑
h=1

(
log 2π + log�h

z + 1
)
−

C∑
c=1

γ ∗c log γ ∗c , (11)

where x̂(s)t is a reconstructed value from z(s)t and α is a
hyper parameter to give weight on reconstruction. μh· and �h·
denote the hth element of each vector, respectively. All optimal
VaRDE parameters φ∗,ψ∗,π∗c ,�∗c , and μ∗c are obtained in a
way to maximize Eq. (11). Eventually, Temporal Data Pools
{D̃c}Cc=1 are established, based on Definition 2.

5) Determining C of Temporal Data Pools: For the tem-
poral data pool construction, we started from Assumption 2,
where C is given as prior. It is not conceivable, yet we need
to find C from S.

To find the most likely parameter, we employ the Bayesian
Information Criterion (BIC) [47] to measure how well C
reflects the hidden embedding. To find the C minimizing the
BIC, we iterate to measure the BIC for z with the given C after
training VaRDE. However, finding optimal C to minimize BIC
is costly. Instead, we make an early stopping when the BIC
increases compared to the previous value. The rationale for
early stopping is that we aim to improve computing resource
efficiency by minimizing the number of models. The upper
side of Fig. 4 demonstrates the actions to construct Temporal
Data Pools for a given training dataset S. Finally, we train
each forecasting model from the given temporal data pools.
For clarity, we call the step to construct optimal temporal data
pools Phase 1 and the step to train forecasting models using
them Phase 2.

C. Making Up for Assumption 4 With Meta-Initialization

Using the Temporal Data Pools given in Phase 1, the TDP
framework trains ISTLF models corresponding to each pool
distribution. One matter in the training model is unanticipated
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Fig. 4. Training steps of the proposed TDP framework.

data imbalance among the pools, i.e., |D̃c| �= |D̃k|. Since the
pools are constructed only based on the distribution inference,
it may not guarantee enough data in a temporal data pool
unexpectedly. This makes Assumption 4 not hold, which may
increase the generalization error (5) of the TDP.

To remedy this, we additionally employ the initialization
strategy of MAML [24] to TDP.1 MAML is an optimization-
based meta-learning that finds the best initial parameter across
multiple tasks through gradient descent to cover data short-
age situations. The effect of MAML stems from feature
reuse of good initialization [48]. Thus, the meta-initialization
can provide shared features over multiple tasks of the TDP,
making effective adaptations with fewer data. Moreover, the
meta-initial parameter serves as a prior in hierarchical empir-
ical Bayes [49]. Recent studies also showed the MAML’s
effect on the generalization gap in data paucity environment
with Bayesian PAC bound [50], [51], which implies this
meta-initialization can complement Assumption 4.

To find the meta-initialization parameter W0 over C TDP
tasks from Phase 1, we first split each temporal data pool into
training and validation datasets, D̃tr

c and D̃val
c . Then, the meta

initializer W0 is found to minimize the following objective:

min
W0

C∑
c=1

LD̃val
c

(
W0 − γ∇W0LD̃tr

c
(W0)

)
, (12)

where

LDc(W) =
∑

(x,y)∈Dc

L
(

hc(x, y;W)
)
.

1This meta-learning-based initialization will be referred to as meta-
initialization. Unlike MAML, which uses the initial parameter in learning new
unseen tasks, our TDP exploits the meta-initialization parameter for ISTLF
training of temporal data pools obtained from Phase 1.

Algorithm 1: Phase 2. Training ISTLF Models With
MAML

input: Temporal Data Pools {D̃TDP
c }Cc=1

output: ISTLF model parameters {Wc}Cc=1
Split each data pool into D̃tr

c and D̃val
c ; Initialize W0

while not converge do
for c ∈ [C] do

Wc ←W0 Wc ←Wc − γ∇WcLD̃tr
c
(Wc) � Inner

loop
end
W0 ←W0 − β∇W0

∑C
c=1 LD̃val

c
(Wc) � Outer loop

end
for c ∈ [C] do

Wc ←W0 � Initialize with meta-initial parameter
while not converge do

Wc ←Wc − γ∇WcLD̃c
(Wc) � Training c model

end
end

This optimization can be resolved through inner-loop and
outer-loop optimization [24]. After getting the meta-initializer
W0, we train each forecasting model initializing with W0.
Algorithm 1 demonstrates this procedure of Phase 2. Fig. 4
demonstrates the overall training steps of the proposed TDP
framework, including both Phase 1 and 2.

V. EXPERIMENTAL EVALUATION & DISCUSSION

This section explains how we evaluate our proposed work
and describes its efficacy. We begin by summarizing the exper-
iment settings, which include the dataset, model, and hyper-
parameters. Then we measure the efficacy of our proposal by
two metrics: RMSE and MAAPE.

A. Experiment Settings

1) Dataset: We employed actual power data from 99 AMI
smart meters built by Korea Electric Power Corporation for
evaluation. Specifically, we exploited low-voltage meters to
evaluate the TDP effect on residential ISTLF, which is trickier
than system-level load forecasting due to its high uncertain-
ties [5]. The data were collected over the course of a year,
from January to December of 2016. Each smart meter mea-
sures the power consumption every 15 minutes. Hereby, the
total number of samples per customer (S/C) is 35,040. We
divide the dataset into two halves for evaluation: the seen and
the unseen customer datasets. The ‘seen’ customer dataset is
further split into two parts: the training and the test dataset,
with a ratio of 8:2. VaRDE and ISTLF exploit the training
dataset, consisting of data samples from January to the mid-
dle of October. In particular, the training dataset is randomly
split into training and validation within each temporal data
pool to find meta-initialization; we set the split ratio as 0.8.
They are respectively used for the inner and outer loop in
Algorithm 1. We only used the test dataset for the accuracy
evaluation, which is never shown in both VaRDE and ISTLF
models. Table I summarizes this dataset configuration.
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TABLE I
SUMMARY OF DATASET USED IN THE EVALUATION

2) VaRDE Network: The VaRDE consists of GRU cells,
where a hidden dimension of 288, i.e., D = 288. Furthermore,
the latent embedding size H is set to 24. Training VaRDE
from scratch may result in divergence since the training is
often biased to minimize the reconstruction loss while ignoring
the regularization objective. To evade this phenomenon, we
initialize the VaRDE with a pre-trained auto-encoder with a
reconstruction loss and the same network architecture as VaDE
did [44]. For training VaRDE, we implement the network with
PyTorch and the Adam optimizer with a learning rate of 1e-5.

3) Forecasting Network: We exploit existing network
architecture to demonstrate that the proposed TDP framework
is a model-agnostic for the ISTLF, providing a fair comparison
with other methods. We adopt the LSTM-based forecasting
network proposed by Kong et al. [5] as the ISTLF model
trained in Phase 2. The network consists of two LSTM lay-
ers, whose hidden size H is 24. The input vector contains a
sequential vector of AMI power data, a one-hot vector repre-
senting the day information, and the other one-hot vector for
the time index. The lookback size L of the input vector is set
to 96, i.e., one day; look forward step T is set to 1, the same as
Kong’s model. For phase 2, we construct and train the ISTLF
models with TensorFlow and Keras with Adam optimizer and
a learning rate of 0.001.

In particular, we apply the proposed TDP framework for
both point and Bayesian forecasting. These extensive test
cases highlight our novelty, wherein the TDP framework out-
performs both cases due to its distribution inference-based
pooling. For point forecasting, we used a similar evaluation
method as Yang et al. except for not using holiday mark as
an input; for Bayesian forecasting, we adopted MC dropout as
most of the pooling-based stochastic ISTLF have done [18],
[33]. We tested the average forecasting value when the prior
probability was set to 0.3 to compare forecasting accuracy for
the Bayesian case. The number of MC-average samples S was
set to 20.

4) Competing Methods: For evaluation, we implemented
six competing methods and two proposed methods. We con-
structed all frameworks with the identical ISTLF network
architecture as described earlier. For two types of evaluation,
point and Bayesian forecasting, two forecasting models are
trained respectively: one is a basic ISTLF network, and the
other is an ISTLF network with dropout layers. The following
are descriptions of all frameworks that have been trained for
this evaluation:
• Global (One-to-all) [16]: It trains a multi-task learning

model with all customer data.
• Local (One-to-One) [5]: It builds a forecasting network

for each customer.

• Local with Meta-Init (One-to-One)[15]: It trains the inde-
pendent network with MAML. Since [15] applied for a
few-shot learning case only, we applied MAML the same
as ours for a fair comparison.

• CDP-Random [17]: It generates pools at random and
trains the models for each pool, where a model takes
the user identifier as an input.

• CDP-AHC [7], [18]: The ensemble method clusters
the average load profiles of each customer using
Agglomerative hierarchical clustering (AHC), and the
CDP-based forecasting models are constructed based on
the result.

• CDP-kMeans [19]: The CDP-based forecasting, where
pools are constructed using k-means clustering.

• (TDP with Random Init) TDP framework with random
initialization: Our proposed TDP framework without the
meta-initialization in Phase 2.

• (TDP with Meta-Init): Our proposed TDP framework
with the meta-initialization (Algorithm 1) in Phase 2.

B. Overall Evaluation

1) Description of Evaluation Results: For the experimen-
tal analysis, we used two metrics to measure the accuracy
of the competing methods and our proposal: RMSE and
MAAPE [52]. The MAAPE is a metric devised for AMI data
with many near-zero values. Table II shows the evaluation
results, which include the average results for multiple cus-
tomers — 96 for seen customers and three unseen customers
at training time. Since each customer has different scales, we
averaged the RMSE values after normalizing over competing
methods of a customer for a fair comparison. Simple average
RMSE and MAAPE are insufficient to evaluate its effect, so
we count the number of customers for whom the approach has
the top one accuracy. The number in parentheses denotes the
counts.

The table contains forecasting results from two methods:
point forecasting (a ∼ h) and Bayesian forecasting (i ∼ p).
The only difference between point forecasting and Bayesian
forecasting is whether MC-dropout is used [18], [35]. Among
the methodologies, b) ∼ h) offers customized ISTLF. On the
other hand, the one-to-all approach trains one model for all
customers, resulting in the lowest accuracy due to the distribu-
tion discrepancy among customers. b) and c) train a forecasting
network for each customer, with each network tailored to a tar-
get customer. Thus, they show higher accuracy, but the number
of forecasting models is the same as the number of customers,
96. d) to h) are pooling-based ISTLF that moderate between
one-to-all and one-to-one, i.e., one-to-multiple. d) to f) are
customer data pooling (CDP) methods that train fewer mod-
els than the number of customers. Their accuracy depends on
how the pools are constructed. g) to h) are our TDP methods
in which only the initialization methods differ.

2) Forecasting Accuracy for Seen Customers: In terms of
mean RMSE and MAAPE, our proposal (g, h, o, and p) out-
performs all competing methods for both point and stochastic
forecasting. It improves accuracy from 9.79% up to 79.13%
in RMSE. In addition, the proposed TDP frameworks have the
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TABLE II
SUMMARY OF THE EVALUATION RESULT. FORECASTING ACCURACIES WERE MEASURED WITH TWO METRICS: RMSE AND MAAPE. EACH ITEM

DENOTES AVERAGE VALUE OVER THE CUSTOMERS — 96 AND 3 FOR VALIDATION AND TEST, RESPECTIVELY. ABOUT THE RMSE, THE AVERAGE

VALUE OF NORMALIZED OVER CLIENTS WAS COMPUTED FOR EVEN COMPARISON. THE VALUE IN THE PARENTHESIS DENOTES

THE NUMBER OF CASES WHERE THE METHOD WINS THE TOP-ONE ACCURACY COMPARED TO OTHERS

Fig. 5. Forecasting result for two Unseen customers.

best accuracy counts written in parenthesis; it has about half
of the best forecasting accuracy, including two initializations.

Interestingly, Bayesian forecasting’s accuracy is lower than
point forecasting because the uncertainty probability is given
as 0.3. Nevertheless, our proposal shows a low error rate in
the prediction mean value because the TDP framework aligns
the distribution of each task based on distribution inference.
The significance of distribution matching can be demonstrated
by comparing two MAML initialization cases: one-to-one
(b and k) and the TDP (h and p). When comparing b and c, the
one-to-one with meta-initialization gets worse in forecasting
accuracy; however, our TDP benefits from MAML compared
to g and h. We conjecture that this is because the TDP makes
training data for each task to be i.i.d. samples, meeting the
MAML assumption. To further evaluate the resource efficiency
and scalability of TDP, we also employed the number of mod-
els used in ISTLF for more than 96 customers as a metric. As
a result, the TDP shows the lowest error with 24 forecasting
models, much less than the one-to-one methods. Furthermore,
overheads caused by dynamic model assignment can be can-
celed by using the StreamDL serving platform [53], providing
pipelining between data pool inference and forecasting.

3) Forecasting Accuracy for Unseen Customer: The
unseen customer case clearly demonstrates the advantages of
the TDP framework. Our proposal provides robust forecasting
to new customers without the need for additional training. The
lowest average MAAPEs for point and Bayesian forecastings
are 37.02% and 40.50%, respectively. Furthermore, it leads to
an error gap of up to 33% compared to the worst case. Fig. 5
depicts the forecasting results for two Unseen customers. The
CDP k-Means performs well in Unseen customer 1, but its
predictive performance is comparatively lower for Unseen cus-
tomer 2, the same as the CDP-AHC. Note that the one-to-one
methods in Fig. 5(c) have undergone additional training. The
one-to-one methods require time to collect enough training
data for each customer and computational resources for addi-
tional training. The figure shows that our proposal outperforms
one-to-one forecasting.

C. Effect of the TDP Framework on Concept Drift

The TDP framework was designed to handle concept drift
with a pooling strategy. In contrast to the existing pooling
strategy, which statically assigns a forecasting network to a
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Fig. 6. Forecasting comparison plot for AMI 66’s test data.

TABLE III
MAAPE COMPARISON AMONG FOUR POOLING METHODS

FOR THE DISTRIBUTION-CHANGE CASE

customer, our proposed TDP dynamically selects the most
probable forecasting model. To evaluate the efficacy of the
TDP when concept drift occurs, we present a case in which
the data distribution is changed in test time.

As Fig. 6 demonstrates the distribution change case, Fig. 6a
and 6b show different times for the same smart meter. At first,
its power load was less than 0.5, and most power values were
nearly zero. As time went by, the active power rose by almost
2 kW. We can notice that the distribution of the customer
has shifted at the test time. Because of this change in distribu-
tion, competing methods did not respond to nearly zero values.
Fig. 6a illustrates how the methods predicted in the near-zero
interval. On the other hand, our proposed method exhibits
accurate prediction in both the activated sections (from 5400
to 5500) and the section close to zero. Table III summarizes
the MAAPE of the point and stochastic forecasting of three
CDP methods and our proposal. One interesting fact is that the
existing approaches increase the error in Bayesian forecasting,
whereas our method improves the accuracy. The distribution
matching technique of the TDP increases the stochastic fore-
casting accuracy by providing an additional prior of the current
input in such highly stochastic situations.

D. Ablation Study

We conducted an ablation study to emphasize the effect
of distribution-aware factors of the proposal, as shown in
Table IV. Here, the TDP denotes the way to construct pools
over sequence chunks as described in Definition 1, except

TABLE IV
ABLATION STUDY FOR EFFECT ON BAYESIAN FORECASTING

Fig. 7. Plot using tSNE to check clustering effect of VaRDE.

Fig. 8. Reconstruction result of VaRDE.

for how to infer the distribution, i.e., VaRDE. It aligns data
pools, so the TDP shows better accuracy than that of the cus-
tomer data pooling under the same clustering and initialization
method, i.e., 42.76% vs. 41.03%. Its effect is more remark-
able for the Unseen customer case with a more considerable
margin, where the forecasting error is reduced by 10.47%.

Besides that, we also compare the TDP with K-Means and
the TDP with VaRDE (Definition 2) to validate the influence
of VaRDE on distribution awareness. The TDP with VaRDE
improves accuracy for both seen and unseen customers, with
MAAPEs of 41.03% vs. 40.93% and 44.76% vs. 42.36%,
respectively. Because VaRDE clusters by distribution infer-
ence, it is better suited for matching individual loads with the
high stochastic distribution. In addition, Fig. 7 and 8 show
how well the proposed VaRDE performs to cluster individual
load profiles. Fig. 7 demonstrates that VaRDE extracts good
embedding to be clustered by dimension reduction compared
to the raw load profiles. Moreover, it not only extracts the
features to be clustered but also represents the distribution of
profiles shown through the reconstruction plot in Fig. 8.

Finally, the meta-initialization highly improves the accuracy
in the stochastic ISTLF by reducing MAAPE from 40.93%
to 39.74% and from 42.36% to 40.50% in Seen and Unseen
cases, respectively. The feature reuse through initialization
obtained by MAML compensates for the pool deviation and
improves accuracy. One interesting point is that the TDP
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TABLE V
EFFECT OF META-INITIALIZATION: MAAPE(%) COMPARISONS. WE

COMPARED EFFICACY OF META-INITIALIZATION ON ONE-TO-ONE

FORECASTING AND THE PROPOSED TDP FRAMEWORK

increases the gain from MAML compared to the one-to-
one ISTLF. The proposed framework redefines tasks in order
to match the distribution of each task. Table V shows that
TDP improves the efficacy of MAML, whereas the on-to-
one is not improved by MAML because each customer’s data
contains data samples from different distributions due to its
non-stationary property.

VI. CONCLUSION

Due to its nature and customer-specific data distribution,
individual load forecasting is highly stochastic and heteroge-
neous. As a result, the forecasting model must be trained in a
distribution-aware manner. Existing pooling-based individual
load forecasting approaches could overcome overfitting issues;
however, they only consider distribution discrepancies between
inter-customers, not intra-customers. Therefore, in this study,
we proposed a new pooling method called the TDP, which con-
structs a data pool over both customer and temporal axes based
on the distribution inference of each sample. We especially
presented a theoretical analysis of the effect of the TDP based
on statistical learning theory; to put this theoretical paradigm
into practice, we proposed the probabilistic deep embedding
method with recurrent networks called VaRDE. In addition,
we raised the possible issue of data imbalance among the
pools when naively using the TDP; we proposed to adopt
meta-initialization to the TDP.

The TDP, which performs pooling solely based on distri-
bution inference for all input data, shows robust forecasting
results even under distribution changes, as expected. Moreover,
this TDP framework demonstrates highly accurate forecast-
ing for a new customer without additional training. The TDP
achieves such excellent forecasting performance because it
infers the distribution at each point and determines the fore-
casting model based on distribution inference. This approxi-
mates the hierarchical probabilistic model that determines the
model’s condition. By doing so, our Bayesian forecasting stud-
ies also confirmed that it has higher accuracy by providing
different priors according to distribution for each model. In
particular, the TDP allows resource-efficient inference fore-
casting in a multi-client cloud environment via model sharing.
Therefore, it is anticipated that this technique can be used for
intelligent power management of customers in such a Cloud
environment.
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