
SLO-aware DL Job Scheduling for Efficient
FPGA-GPU Edge Cloud Computing

Taewoo Kim1[0000−0003−4290−6460], Minsu Jeon1[0000−0002−2739−8149],
Changha Lee1[0000−0003−3687−2989], Fawaz AL-Hazemi2[0000−0003−3212−8941],

and Chan-Hyun Youn1[0000−0002−3970−7308]

1 Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
{taewoo_kim, msjeon, changha.lee, chyoun}@kaist.ac.kr

2 University of Jeddah, Jeddah 21959, Saudi Arabia
fmalhazemi@uj.edu.sa

Abstract. Deep learning applications have become increasingly popu-
lar in recent years, leading to the development of specialized hardware
accelerators such as FPGAs and GPUs. These accelerators provide sig-
nificant performance gains over traditional CPUs, but their efficient uti-
lization requires careful scheduling configuration for given DL requests.
In this paper, we propose a SLO-aware DL job scheduling model for effi-
cient FPGA-GPU edge cloud computing. The proposed model takes into
account variant service-level objectives of the DL job and periodically
updates the accelerator configuration of DL processing while minimizing
computation costs accordingly. We first analyze the impact of various
DL-related parameters on the performance of FPGA-GPU computing.
We then propose a novel scheduling algorithm that considers the time-
variant latency SLO constraints and periodically updates the scheduling
configuration. We evaluated our scheduler using several DL workloads
on a FPGA-GPU cluster. Our results demonstrated that our scheduler
achieves improvements in terms of both energy consumption and SLO
compliance compared to the traditional DL scheduling approach.

Keywords: DL Scheduling · FPGA-GPU Computing. · Edge Comput-
ing for DL Serving

1 Introduction

In edge cloud computing, where resources are limited and power consumption is
a key issue for operators, efficient resource usage is critical for delivering high-
performance deep learning (DL) services. With the increasing diversity of DL
applications, such as image and natural language processing, the latency ser-
vice level objective (SLO) can vary depending on the application requirements.
Heterogeneous accelerators, such as field-programmable gate arrays (FPGAs)
and graphics processing units (GPUs), can be used in edge cloud computing
to accelerate DL tasks and reduce latency. One of the main challenges in DL
job scheduling for FPGA or GPU is to ensure efficient utilization of resources

2 T. Kim et al.

while satisfying the SLO requirements of different applications. To address this
challenge, several approaches have been proposed in the literature, including
batch size adjustment and spatial-temporal scheduling schemes to maximize the
throughput of resources, mainly targeting a homogeneous GPU cluster. How-
ever, the effective scheduling of DL jobs on heterogeneous FPGA-GPU clusters
is still a challenging problem due to its different characteristics of processing
performance in terms of throughput and energy consumption.

In this paper, we present a novel scheduling approach that focuses on op-
timizing the use of heterogeneous accelerators while ensuring latency SLO of
DL applications in FPGA-GPU edge cloud computing. Our proposed method
considers various scheduling primitives depending on the type of accelerator and
adjusts the scheduling configuration according to the time-varying latency SLO
and DL requests. We conducted experiments on a heterogeneous FPGA-GPU
cluster to evaluate the performance of our proposed scheduler.

2 Related Work and Problem Description

In this section, we discuss various approaches to handling GPU scheduling for
DL jobs and some approaches addressing heterogeneous FPGA-GPU schedul-
ing. The conventional GPU schedulers like Nexus [7] and Clippers [3] exploit a
one-at-a-time scheduling mechanism, where the entire GPU resources including
parallel cores and memory are occupied by a single DL job. In this situation,
they fix a batch size as the maximum value which can be accepted in the GPU
memory while satisfying the latency SLO to get a high throughput (requests per
second). One limitation of this mechanism is that it can result in significant idle
time for GPUs when serving DL jobs with low request rates, which can decrease
overall resource utilization in edge cloud computing. To address the limitation,
NVIDIA developed multi-process service (MPS) [1] to support concurrent exe-
cution of DL jobs over multiple workers. Dynamic spatial-temporal scheduling
scheme [5] has also been shown to improve performance of DL processing. Other
GPU scheduling approaches, such as GSLICE [4] and Salus [8], use fine-grained
partitioning of parallel cores and spatial-temporal scheduling to maximize ca-
pacity and reduce memory occupancy for deploying given DL models. On the
other hand, [6] uses layer-level management scheme on FPGA-GPU clusters to
derive optimal data distribution and batch size while minimizing energy costs
for heterogeneous FPGA-GPU clusters. Nevertheless, there is still potential for
enhancing the effectiveness of resource utilization in the context of FPGA-GPU
scheduling by implementing a concurrent execution mechanism, which can con-
serve computational resources in an edge cloud setting.

3 A Proposed SLO-aware DL Job Scheduling Model

In this section, we describe our proposed approach for SLO-aware DL job schedul-
ing in FPGA-GPU computing, as illustrated in Fig. 1. The system receives DL
inference jobs, each with a request set (i.e. a bunch of input data) and latency

SLO-aware DL Job Scheduling for FPGA-GPU Computing 3

Fig. 1: The proposed architecture of SLO-aware DL job scheduling for FPGA-
GPU edge cloud computing.

SLO. The latency SLO represents the required time for processing a given re-
quest set. The scheduler continuously monitors the feasibility of satisfying the
SLO with the current scheduling configuration in the cluster. If it is determined
that the current configuration cannot meet the required latency SLO, the sched-
uler updates the configuration based on FPGA-GPU performance predictions.
Otherwise, it can adaptively reduce resources for computation costs in edge cloud
computing when the current scheduling configuration is sufficient for serving re-
quests.

In terms of edge cloud computing resources, we describe a computing envi-
ronment in k-th time slot. We refer SGPU

k and SFPGA
k as a set of NGPU

k GPUs
and NFPGA

k FPGAs available in an edge cloud environment, respectively. The
total number of FPGA-GPU accelerators is Nk = NGPU

k +NFPGA
k . We assume

that the available accelerators are limited for each particular time slot. The la-
tency consumed for processing DL inference can vary depending on the state
of the scheduling configuration. The latency SLO Lk and service requests Dk

can also be time-variant but we assume that it is fixed in the same time slot.
In terms of components for processing DL inference, especially in accelerators,
they consist of the pre-processing time conducted in host platforms such as CPU,
memory, and storage, feed-forward computation time executed in an accelera-
tor, and return time notifying inference result to a service user. Our scheduling
algorithm only considers the computation time of an accelerator since the other
components are consistent regardless of accelerator type.

4 T. Kim et al.

3.1 Performance Model for FPGA-GPU Computing

In edge cloud computing with heterogeneous FPGA-GPU accelerators, we con-
duct the performance modeling when processing DL inference. To reduce pro-
cessing costs and maximize the availability of user requests, especially in GPU,
we utilize a concurrent execution mechanism [5, 4, 8, 2] that executes multiple
workers on an accelerator. In particular, it is possible to increase the overall
utilization of GPU by sharing simultaneous streaming multiprocessor and global
memory.

As the controllable factors for computation time in an accelerator, we con-
sider two factors; batch size and concurrency (i.e. the number of concurrent
workers). We derive the computation time T j

k,i for processing a single batch in
j-th worker of i-th accelerator as follows:

T j
k,i(Ck,i, bs

j
k,i) = (αi · bsjk,i + βi) ·Qk,i(Ck,i), (1)

where Qk,i(Ck,i) ∈ R is slowdown ratio due to concurrent workers (i.e. Qk,i(1) =
1), and αi, βi are coefficients determined by an accelerator and a DL model.
In FPGA, we fix a single worker (i.e. Ck,i = 1, ∀i ∈ SFPGA

k). As described in
αi ·bsjk,i+βi, the computation time is a linear model by a batch size, and the time
increases due to contention of shared resources by multiple workers. From the
computation time modeling, we can derive the throughput and energy cost of an
accelerator. From Eq.1, the throughput (requests per second) of i-th accelerator
Hk,i can be derive as follows:

Hk,i(Ck,i,bsk,i) =

Ck,i∑
j=1

bsjk,i

T j
k,i(Ck,i, bs

j
k,i)

=

Ck,i∑
j=1

bsjk,i

(αi · bsjk,i + βi) ·Qk,i(Ck,i)
, (2)

where we denote bsk,i ∈ RCk,i as a set of batch size in each worker. It can be
presented as the sum of the throughput of all workers simultaneously executed
in i-th accelerator. From Eq. 2, the energy cost consumed for processing a unit
request in i-th accelerator can be given to:

Ek,i(Ck,i,bsk,i)=
Pk,i(Ck,i)

Hk,i(Ck,i,bsk,i)
=

Ck,i∑
j=1

(αi · bsjk,i + βi) ·Qk,i(Ck,i)

bsjk,i
· Pk,i(Ck,i),

(3)

where the active power of i-th accelerator with Ck,i concurrent workers is de-
noted as P k,i(Ck,i). It implies that the energy consumption of an accelerator is
dependent on j-th concurrent worker having the slowest computation time.

3.2 Proposed Scheduling Scheme

Based on the performance model of FPGA-GPU accelerators, we describe the
SLO-aware DL job scheduling in k-th time slot under the aforementioned envi-
ronment. The variable for the number of concurrent workers allocated to each

SLO-aware DL Job Scheduling for FPGA-GPU Computing 5

accelerator is denoted as Ck = {Ck,i | ∀i ∈ SFPGA
k ∪ SGPU

k } and its batch
size is represented as bsk = {bsjk,i | ∀i ∈ SFPGA

k ∪ SGPU
k , ∀j ∈ [Ck,i]}. The

number of requests (i.e. DL inputs) assigned to each accelerator is denoted as
Dk = {Dj

k,i | ∀i ∈ SFPGA
k ∪SGPU

k , ∀j ∈ [Ck,i]}. Let |Dk,i| =
∑

j D
j
k,i be the total

number of requests, and If Dj
k,i = 0,∀j ∈ [Ck,i], i-th accelerator is deactivated

(i.e. there are no DL jobs allocated).
We now present the scheduling problem of edge cloud computing with het-

erogeneous FPGA-GPU accelerators. Given latency SLO Lk in k-th time slot,
the objective is to maximize the overall throughput of FPGA-GPU accelerators
while reducing the energy consumption in an edge cloud environment. We now
formulate an optimization problem as follows:

maximize
Ck,bsk,Dk

Nk∑
i=1

|Dk,i|
|Dk|

· Hk,i(Ck,i,bsk,i)

Ek,i(Ck,i,bsk,i)
, (4)

subject to T j
k,i(Ck,i, bs

j
k,i) ·D

j
k,i ≤ Lk, ∀i ∈ [Nk], ∀j ∈ [Ck,i], (5)

Nk∑
i=1

Ck,i∑
j=1

Dj
k,i = |Dk|, (6)

where |Dk| is the total number of received requests. The objective function in
Eq. 4 is to maximize the energy efficiency for DL processing, which is represented
as achievable throughput per energy while multiplying the ratio of allocated
requests as a weighting factor. This can achieve efficient resource usage in edge
cloud computing with low power consumption. The constraints is follows; Eq.5
describes the satisfaction of latency SLO, which we only consider computation
time constraints for simplicity, and Eq. 6 implies that the received requests
should be allocated to an accelerator.

Since the optimization problem is non-convex (multiplication of control vari-
ables), we propose a heuristic configuration method with updating scheduling
parameters periodically. For this purpose, we introduce a simple way to verify
computing loads in the starting of k-th time slot. Given the volume of requests
Dk and its latency SLO Lk, the scheduler evaluates the feasibility of the average
expected computation time with previous scheduling parameters. If the number
of requests is |Dk| in k-th period, the average expected computing time is as
follows:

Tavg =
|Dk|∑

i Hk−1,i(Ck−1,i,bsk−1,i)
. (7)

Algorithm. 1 shows the heuristics for the proposed scheduler. It utilizes Eq. 7
to determine the optimal batch size and concurrency for each accelerator that
maximizes overall throughput. This configuration is set as a baseline in the
initialization step, which serves as a benchmark for efficient resource utilization
over time slots. Additionally, all accelerators are activated by the scheduler.

At the beginning of k ≥ 2 time slot, the proposed approach evaluates whether
the latency SLO is met by the scheduling configuration at k − 1 by checking if

6 T. Kim et al.

Algorithm 1 SLO-aware DL Job Scheduling for FPGA-GPU Computing.
Input: received requests Dk, latency SLO Lk, SGPU

k GPUs and SGPU
k FPGAs, total

number of accelerators Nk.

1: k ← 1
2: I← Arr [0 : Nk].
3: for all i ∈ SGPU

k ∪ SFPGA
k do ▷ initialize

4: Initiate bs∗k,i, C
∗
k,i maximizing Eq. 2

5: I[i]← 1
6: end for
7: while true do
8: k ← k + 1
9: if Tavg ≥ Lk then ▷ tight workloads

10: while |Dk|/
∑

i Hk,i(Ck,i,bsk,i) ≤ Lk do
11: Z← {i|I[i] = 0}
12: z∗ ← argz∈Z maxH1,z(C

∗
1,z,bs

∗
1,z)/E1,z(C

∗
1,z,bs

∗
1,z)

13: I[z∗]← 1
14: Update

∑
i Hk,i(Ck,i,bsk,i), ∀{i|I[i] = 1}

15: end while
16: else ▷ loose workloads
17: while |Dk|/

∑
i Hk,i(Ck,i,bsk,i) ≤ Lk do

18: Z← {i|I[i] = 1}
19: z∗ ← argz∈Z minH1,z(C

∗
1,z,bs

∗
1,z)/E1,z(C

∗
1,z,bs

∗
1,z)

20: I[z∗]← 0
21: Update

∑
i Hk,i(Ck,i,bsk,i), ∀{i|I[i] = 1}

22: end while
23: end if
24: Assign Dk proportion to throughput of each accelerators
25: end while

the time required to complete the requests is within the latency SLO Lk. If the
task can be completed within the SLO, the scheduler reduces the allocated ac-
celerators one by one, starting with the least energy-efficient one. This is done
to minimize power consumption by deactivating unnecessary accelerators. How-
ever, if the task cannot be completed within the required latency, the scheduler
increases the allocated accelerators one by one, starting with the most energy-
efficient one, until the latency SLO is met. Finally, it divides the requests Dk

among the available accelerators in proportion to their respective throughput.

4 Performance Evaluation and Discussion

In order to evaluate the performances of the proposed scheduling algorithm
in an edge cloud environment, we constructed the heterogeneous FPGA-GPU
computing environments. We prepared the two server nodes that consist of 4
NVIDIA RTX 3080 GPUs, 2 NVIDIA 2080 Super GPUs, and 2 Xilinx Alveo
U200 FPGAs. To evaluate the performance of the proposed scheduling method,

SLO-aware DL Job Scheduling for FPGA-GPU Computing 7

Fig. 2: Comparison of processing time (left), energy consumption (center), and
throughput of accelerators (right) in FPGA-GPU cluster under relaxed latency
SLO Lk = 5 sec.

Fig. 3: Comparison of processing time (left), energy consumption (center), and
throughput of accelerators (right) in FPGA-GPU cluster under tight latency
SLO less Lk = [1, 1.5, 2] sec.

we compared it to the scheduler in Nexus [7] as a baseline that allocates only the
maximum batch size with a single worker to achieve the maximum throughput
regardless of the power consumption. For performance metrics, we measured the
processing time delayed from all received requests, the total energy consumption
to complete the inference, and the total throughput of the allocated accelerators.

Initially, we evaluated the performance of the proposed model by varying the
input loads Dk under a relaxed latency SLO of Lk = 5 sec. We measured the
performance metrics for input loads |Dk| = [20000, 30000, 40000]. Fig. 2 depicts
the comparison results, where the proposed model demonstrates lower energy
consumption 6.6% than the baseline by finding a better configuration through
the allocation of multiple workers in each accelerator. Moreover, the proposed
model allocates fewer accelerators for |Dk|=20000 and 40000 but still satisfies
the Lk = 5 sec latency SLO.

Furthermore, we evaluated the model’s performance under a narrower latency
SLO of Lk = 2 sec. As shown in Fig. 3, the proposed model searches for the

8 T. Kim et al.

optimal configuration to minimize the total processing time while meeting the
latency SLO. Compared to the baseline, which slightly violates the given latency
SLO, the proposed scheduler reduces the processing time by 7% and shows lower
energy consumption 6.5%.

5 Conclusion

In this paper, we proposed an SLO-aware DL job scheduling scheme for effi-
cient FPGA-GPU edge cloud computing. By considering the different charac-
teristics of heterogeneous accelerators, we aim to optimize resource usage while
ensuring that the application’s latency SLO is met. Through experiments on a
heterogeneous FPGA-GPU cluster, we demonstrated that our proposed sched-
uler achieved better performance in terms of resource utilization and meeting
SLO requirements compared to existing scheduling schemes. Future work could
explore how to further improve the performance of our proposed scheduler by
considering additional factors such as power consumption, network bandwidth,
and system heterogeneity.

Acknowledgements This work is supported by Samsung Electronics Co., Ltd.

References

1. NVIDIA multi-process service. https://docs.nvidia.com/deploy/mps/index.html.
2. Choi, S., Lee, S., Kim, Y., Park, J., Kwon, Y., and Huh, J. Multi-model

machine learning inference serving with gpu spatial partitioning. arXiv preprint
arXiv:2109.01611 (2021).

3. Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez, J. E.,
and Stoica, I. Clipper: A {Low-Latency} online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)
(2017), pp. 613–627.

4. Dhakal, A., Kulkarni, S. G., and Ramakrishnan, K. Gslice: controlled spatial
sharing of gpus for a scalable inference platform. In Proceedings of the 11th ACM
Symposium on Cloud Computing (2020), pp. 492–506.

5. Jain, P., Mo, X., Jain, A., Subbaraj, H., Durrani, R. S., Tumanov, A.,
Gonzalez, J., and Stoica, I. Dynamic space-time scheduling for gpu inference.
arXiv preprint arXiv:1901.00041 (2018).

6. Kim, W.-J., and Youn, C.-H. Cooperative scheduling schemes for explainable
dnn acceleration in satellite image analysis and retraining. IEEE Transactions on
Parallel and Distributed Systems 33, 7 (2021), 1605–1618.

7. Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose, M., Krishna-
murthy, A., and Sundaram, R. Nexus: A gpu cluster engine for accelerating
dnn-based video analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (2019), pp. 322–337.

8. Yu, P., and Chowdhury, M. Salus: Fine-grained gpu sharing primitives for deep
learning applications. arXiv preprint arXiv:1902.04610 (2019).

