
Received 6 December 2022, accepted 17 December 2022, date of publication 27 December 2022,
date of current version 24 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3232566

A Channel Pruning Optimization With Layer-Wise
Sensitivity in a Single-Shot Manner Under
Computational Constraints
MINSU JEON , TAEWOO KIM , CHANGHA LEE , (Member, IEEE),
AND CHAN-HYUN YOUN , (Senior Member, IEEE)
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Corresponding author: Chan-Hyun Youn (chyoun@kaist.ac.kr)

This work was supported in part by the Challengeable Future Defense Technology Research and Development Program of Agency for
Defense Development, in 2022, under Grant 915027201; and in part by Samsung Electronics Company Ltd., under Grant
IO201210-07976-01.

ABSTRACT In the constrained computing environments such as mobile device or satellite on-board system,
various computational factors of hardware resource can restrict the processing of deep learning (DL) services.
Recent DL models such as satellite image analysis mainly require larger resource memory occupation for
intermediate feature map footprint than the given memory specification of hardware resource and larger
computational overhead (in FLOP) to meet service-level objective in the sense of hardware accelerator.
As one of the solutions, we propose a new method of controlling the layer-wise channel pruning in a
single-shot manner that can decide how much channels to prune in each layer by observing dataset once
without full pretraining. To improve the robustness of the performance degradation, we also propose a
layer-wise sensitivity and formulate the optimization problems for deciding layer-wise pruning ratio under
target computational constraints. In the paper, the optimal conditions are theoretically derived, and the
practical optimum searching schemes are proposed using the optimal conditions. On the empirical evaluation,
the proposed methods show robustness on performance degradation, and present feasibility on DL serving
under constrained computing environments by reducing memory occupation, providing acceleration effect
and throughput improvement while keeping the accuracy performance.

INDEX TERMS Single-shot pruning, channel pruning, lottery ticket hypothesis, DL model compression.

I. INTRODUCTION
Recent advances in deep learning (DL) models have achieved
remarkable analysis performance in many computer vision
tasks [1], [2]. Since the recent convolutional neural networks
(CNNs) have grown in depth and complexity in pursue of
high analysis performance, it becomes a challenge to deploy
DL models on constrained computing environments such as
mobile device or satellite on-board system.

As one of the solutions, pruning can reduce computational
overhead and resource occupation of DL models, which
enables deploying in constrained computing resources. The
state-of-the-art pruning schemes [3], [4] attempt to decide

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

weight parameters to prune in single-shot manner without
pretraining that requires additional huge computational over-
head. However, these single-shot based pruning schemes are
mainly targeted on weight pruning, that can not directly
achieve reduction in computational resource occupation of
DL models without sparsity-aware designed hardware or
software; even such sparsity-aware hardware or software are
provided, they yield only a small effect on practical DL
acceleration [5].

Therefore, it can be considered to apply the single-shot
based channel pruning that can achieve reduction on compu-
tational resource occupation and acceleration on processing
DLmodel directly by removing output channels of each layer
for constrained computing environments. There are three
main issues on channel pruning the DLmodel in a single-shot

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 7043

https://orcid.org/0000-0002-2739-8149
https://orcid.org/0000-0003-4290-6460
https://orcid.org/0000-0003-3687-2989
https://orcid.org/0000-0002-3970-7308
https://orcid.org/0000-0002-5059-3145

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

manner for constrained computing environments: 1) how
to adapt single-shot weight pruning to a channel pruning
scheme, 2) risk of pruning a whole layer in channel prun-
ing with global searching scheme, and 3) varied aspects on
layer-wise pruning sensitivity and layer-wise computational
properties.

To solve the problems, we propose a new scheme of
layer-wise channel pruning in a single-shot manner that
is robust to the performance (accuracy) degradation while
meeting the computational constraints of target hardware
resource. Our main contributions can be summarized as
follows.

• Firstly, theoretical analyses on validity of two possi-
ble single-shot channel pruning criteria adapted from
single-shot weight pruning scheme are conducted, and
the valid one is defined as channel sensitivity.

• We also observe that pruning channels with globally
searching scheme under lottery ticket hypothesis [6]
is prone to remove a whole layer by difference on
layer-wise channel sensitivity scale, and propose a
layer-wise sensitivity to regulate critical performance
degradation caused by excessive pruning on a certain
layer.

• Finally, we formulate the optimization problem that
decides layer-wise pruning ratios to minimize sensitivity
score of target model while meeting the computational
constraints of target hardware resource. We derive the
optimal conditions, and propose the practical methods
to search the optimal solutions that enable to consider
diverse layer-wise aspects of pruning sensitivity and
computational characteristics.

In the paper, empirical evaluation of the proposed methods
is conducted on various datasets and network models. The
proposedmethods show improved robustness on performance
degradation and feasibility on DL serving with its accelerat-
ing effect.

II. RELATED WORK
A. DL PROCESSING ON CONSTRAINED COMPUTING
ENVIRONMENTS
Applications like personalized service on mobile device [7],
[8], anomaly detection from IoT device [9], and satellite
imagery analysis [10] on on-board processing system [11]
require deploying DLmodels on constrained computing envi-
ronment. As one of use cases, Cloudscout [11] deploys the
custom designed CNN for nanosatellite to select eligible
data by detecting cloud as binary masking form. As the
available hardware resources and power budget are limited
in such environment, light-weight DL model is designed by
constructing short and small CNN, but the light-weight DL
model inevitably shows lower performance than the deeper
and wide CNNs in general [12].

The main computational constraints of deploying such
deep CNNs under limited hardware resources are resource
memory occupation and computation overhead (which is

FIGURE 1. Necessity of pruning for serving DL model on constrained
computing environments.

generally quantified in the number of floating point opera-
tions (FLOP)). Since the size of the target input image grows
up on the recent practical applications, requirement of the
resource memory occupation size for intermediate feature
maps in CNN mainly exceeds the given hardware memory
size [13], [14]. For example, as shown in Fig. 1, deploying
Faster-RCNN [2] model with 1k x 1k input requires about
9GB resource memory occupation for memory footprint of
intermediate feature maps and about 3TFLOP of compu-
tational overhead, however, the hardware accelerators for
constrained computing environments like NVIDIATX-1 [15]
or Xilinx VC707 [16] can only accommodate 4GB memory
at maximum and can achieve about 60∼500GFLOPS for
DL inference processing which is far insufficient to compute
within seconds level.

B. SINGLE-SHOT WEIGHT PRUNING
According to the time point when to prune the model,
research on pruning can be divided into two main branches:
(1) a form of pruning from pretrained state, and (2) a form of
pruning from initial state by observing dataset only once. The
schemes of pruning from pretrained state [17], [18] inevitably
suffer performance degradation from the original pretrained
model even though the further fine-tuning is conducted.
A recent study observes the lottery ticket hypothesis [6] that
there exists the sparse trainable subnetworks at initialization
(called as winning ticket). However, finding this winning
ticket from pretrained state requires additional computing
overhead of pretraining the original model before retraining
the pruned model. Therefore, recent works [3], [4] propose
the single-shot based weight pruning criterion that can search
weight parameters to prune in initial state without pretraining
full iterations.

7044 VOLUME 11, 2023

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 2. Illustration of pruning a output channel in a convolutional
layer.

C. CHANNEL PRUNING
However, the weight pruning itself can not directly achieve
reduction on resource memory occupation and computa-
tion overhead without sparsitiy-aware designed hardware and
software [5], and its effect is relatively small on general
GPU resources [19] comparing to the degree of pruning.
Accordingly, channel pruning [20], [21] can be applied to
directly reduce the resource memory occupation and compu-
tation overhead of DL model by removing output channels
in each layer. As the channel pruning is more risky to the
performance degradation by removing a bunch of weights
linked to output channel at once, most studies [17], [21]
mainly targeted on how efficiently recover the performance
degradation for pruning from pretrained state than how to
select efficient channels to prune.

On the other side, some studies [22], [23], [24] attempted
to prune the channels as a form of neural architecture
search (NAS) by constructing the loss function that con-
siders the both task performance and model cost (e.g.,
memory or FLOP) together. However, such NAS-based
methods inevitably requires the additional heavy over-
head of training the NAS model itself before training the
pruned model.

To overcome these limitations, in this paper, we aim to
propose an efficient channel pruning scheme for constrained
computing environments in a single-shot manner.

III. SINGLE-SHOT BASED LAYER-WISE CHANNEL
PRUNING WITH COMPUTATIONAL CONSTRAINTS
In this section, we firstly introduce how to adapt single-shot
based weight pruning criterion to channel pruning scheme,
and check its validity theoretically. Then, the layer-wise
sensitivity is introduced to regulate excessive pruning on a
certain layer, and we formulate the optimization problem for
minimizing the whole pruning sensitivity score of the model.
We then derive the optimal condition and propose a practical
optimum searching method for each constraint respectively
in the following subsections.

A. SINGLE-SHOT BASED CHANNEL PRUNING
Let ni, hi, andwi denote the number of output channels, height
and width of the output feature map in ith layer, respectively.
As shown in Fig. 2, from the input xi−1, a convolution layer

TABLE 1. Computation time required for pretraining and retraining over
channel pruning methods.

conducts ni · ni−1 convolution operations, and pruning can
be represented as masking the filters denoted by Ci � Fi,
where� denotes element-wise product, and θ ip,q denotes each
kernel parameter for linking pth output channel and qth input
channel in ith layer. In the following, let denote C as a set of
whole masking matrices in the network, and denote C�F as
masking in each layer by Ci � Fi.
Table 1 shows the motivation of our work for single-shot

based channel pruning. In the table, the training elapsed time
to achieve the best test accuracy among 160 epochs on each
pruning methods is measured. The test environment is same
with that of Table 2, 3 described in Section IV-A. The target
model is ResNet-101 for satellite imagery dataset which is
the most practical application.

As shown in the result, the conventionalmethods that prune
from the pretrained state then conduct fine-tuning (denoted as
Pt + Ft, and the fine-tuning time is presented as retraining
time) [21] or then conduct retraining with re-initialization
(denoted as Lottery) [6] show much more computational bur-
den on total of pretraining (single-shot observing stage for the
proposed method) and retraining (or fine-tuning) stage. Such
overheads even exceed the overhead of training the original
full model. Accordingly, we target to address the single-shot
based channel pruning that can achieve acceleration on both
pretraining stage and retraining (or fine-tuning) stage not only
on the inference phase.

1) CHANNEL SENSITIVITY
As lack of study on single-shot based channel pruning cri-
terion, we analyze two possible adapting ways for channel
pruning from single-shot based weight pruning criterion.
First possible criterion is summing up the single-shot based
weight masking effect along the weights linked to the target
output channel. Let L denotes a loss function (e.g., cross-
entropy loss), D denotes given dataset. When observing this
criterion theoretically, from one of the single-shot based
weight pruning criterion [3], weight-wise sensitivity is given

as sip,q =
|gip,q(F;D)|∑

i′

∑
p′

∑
q′
|gi
′

p′,q′
(F;D)|

where gip,q =
∂L(C�F;D)

∂cip,q
|C=1 ≈

L(F;D) − L(F; θ ip,q = 0,D), and i, p, q denote index of
layer, output channel, input channel respectively. However,
pruning with this criterion can not guarantee being equal to
solving the empirical risk minimization problem of network
in the finite hypothesis space of pruning, which is stated as
following property.
Property 1: Pruning a channel by

∑
q s

i
p,q (where s

i
p,q is

single-shot based weight sensitivity in [3]) can not guarantee
being equal to solving empirical risk minimization (ERM)

VOLUME 11, 2023 7045

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

problem of the neural network in the finite hypothesis space
of pruning.

Proof: Consider the weight-wise pruning criterion on
SNIP [3],

sip,q =
|gip,q(F;D)|∑

i′
∑

p′
∑

q′ |g
i′
p′,q′ (F;D)|

. (1)

As mentioned in main content, i is index of layer, p or
j denotes index of output channel, and q denotes index of
input channel. Choosing a channel to prune by

∑
q s

i
p,q as a

form of summing up weight-wise scores linked to the target
channel [21] is written as:

argmin
i,j

∑
q

sip,q. (2)

Consider the pruning a channel by conducting element-wise
product on filters with masking matrix (Ci � Fi) is equal to
finding Fi with which channel to be pruned (θ ip,q = 0,∀q)
in the finite hypothesis space H where the space consists of
all possible channel pruning cases. Therefore, the problem of
(2) can be written as:

= argmin
Fi|θ ij,q=0,∀q

∈H

∑
q

sip,q. (3)

Applying
∑

q s
i
p,q =

∑
q |L(F;D)−L(F;θ ip,q=0,D)|∑
i′

∑
p′

∑
q′ |g

i′
p′,q′

(F;D)|
to (3),

denominator term and L(F;D) term in numerator are con-
stant with regard to j (wrapped as Fi|θ ij,q=0,∀q

). As the cross
entropy is usually used as loss function L(), assume L > 0.
Then, the problem in (3) can be written as:

= argmin
Fi|θ ij,q=0,∀q

∈H

∑
q |α − L(F; θ ip,q = 0,D)|

β
(4)

6= argmin
Fi|θ ij,q=0,∀q

∈H
L(F; θ ip,q = 0,D), (5)

where α, β ∈ R, and α > 0, β ≥ 0 are constants. Therefore,
this problem equation does not guarantee equal to problem of
empirical risk minimization (5). �

Alternatively, we define channel sensitivity by transform-
ing single-shot based weight pruning criterion [3] to the form
of direct output channel masking effect as follows.

sij =
|gij(C � F;D)|∑

i′

∑
j′
|gi
′

j′ (C � F;D)|
, (6)

where gij(C � F;D) = ∂L(C�F;D)
∂cij

|C=1 ≈ L(C � F;D) −

L(C|cij=0 � F;D).

Pruning a channel with the defined criterion (sij) can be
stated as an equivalent problem of minimizing the empirical
loss on the network, as shown in the following Lemma 1.
Lemma 1: If L(C � F; cij = 0,D) ≥ L(C � F;D) ≥

0,∀(i, j) ∈ {(i, j)|cij = 1,∀cij ∈ C}, pruning a channel by sij is

equal to solving empirical risk minimization (ERM) problem
of the neural network in the finite hypothesis space.

Proof: In the score formulation transformed for channel
pruning from weight-wise score of [3], impact of pruning
j-th output channel in i-th layer (1L ij) is approximated to
gij(C �F;D) for calculation efficiency in implementation as
follows.

1L ij (F;D) = L(C � F;D)− L(C � F; cij = 0,D)

≈ gij(C � F;D) =
∂L(C � F;D)

∂cij
|C=1 (7)

Applying this to sij of (6) obtains

sij =
|gij(C � F;D)|∑

i′

∑
j′
|gi
′

j′ (C � F;D)|
(8)

≈
|L(C � F;D)− L(C � F; cij = 0,D)|∑

i′
∑

j′ |L(C � F;D)− L(C � F; cij = 0,D)|
. (9)

Therefore, choosing a channel to prune by sij is written as:

argmin
i,j

sij (10)

= argmin
i,j

|L(C � F;D)− L(C � F; cij = 0,D)|∑
i′
∑

j′ |L(C � F;D)− L(C � F; cij = 0,D)|
,

(11)

where denominator term and L(C�F;D) term in numerator
are constant with regard to i, j.
As the cross entropy is usually used as a loss function

L(·), assume L > 0. Then, when denoting L(C � F;D)
in numerator and denominator term as constant α, β ∈ R,
α, β ≥ 0 respectively, the equation of (11) becomes:

= argmin
i,j

|α − L(C � F; cij = 0,D)|

β
. (12)

This implies that, when L(C � F; cij = 0,D) ≥ α ≥ 0,
the problem becomes equal to empirical risk minimization
problem of the neural network in the finite hypothesis space
H where the space consists of all possible channel pruning
cases. Therefore, in such condition, (12) becomes:

= argmin
i,j

L(C � F; cij = 0,D) (13)

= argmin
F∈H

L(F;D). (14)

�
The exception condition L(C � F; cij = 0,D) < L(C �

F;D) also means the case where pruning reduces the loss
from non-pruned state.Moreover, as solving ERMguarantees
probably approximately correct (PAC) bound [25], under
the same condition in Lemma 1, pruning a channel by sij
also guarantees PAC bound and its estimation error is upper
bounded. As minimizing empirical loss tends to result in
minimizing test error except overfitting, it can be expected

7046 VOLUME 11, 2023

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 3. Cumulative density on the number of channels with regard to
the channel sensitivity value si

j in each layer of VGG-16 with CIFAR-10,
which shows the risk on early layer removal.

that pruning with the criterion from (6) can contribute to
minimize test error.

2) LAYER-WISE SENSITIVITY
However, the defined single-shot based channel sensitiv-
ity reveals distributional difference over layers as shown in
Fig. 3. Since the channel sensitivity scores are distributed
on different bound for each layer and the bounds are dif-
ferent over layers, it is prone to prune a certain whole
layer as the degree of pruning increases on global search-
ing scheme. For example, as shown in Fig. 3, trying to
prune the model with the normalized channel sensitivity
criteria value of 0.2 just invokes removing whole channels
of layers (Layer 8, Layer5, etc.). Such risk of pruning a
whole layer results in critical performance degradation, and
the early layer removal worsens the robustness of perfor-
mance degradation with regard to the compression rate. The
detailed evaluation results of such risk are also presented in
Section IV.

To overcome such risk, in the methods of pruning from
pretrained state, layer-wise pruning sensitivity curve that
reveals layer-wise performance degradation with respect to
the degree of pruning can be easily obtained from profiling
process, and this layer-wise pruning sensitivity curve can
be used to regulate pruning a certain layer excessively [21].
However, in the single-shot based pruning scheme, it is
practically impossible to obtain the layer-wise pruning sen-
sitivity curves as it can not directly obtain performance
information unless training on each profiling points with full
iterations.

Instead, in order to replace the task performance degrada-
tion profiled curve that cannot be acquired in the single-shot
pruning scheme, we define a layer-wise sensitivity LSi for
single-shot pruning scheme in the inverse form of sum on
total channel sensitivity scores on remaining channels after

Algorithm 1 Global Channel Pruning Scheme With Layer-
Wise Sensitivity: s-Ls-global()
Input: Target pruning ratio pr
1: cij← 1 for ∀i, j
2: calculate sij for ∀i, j
3: update LSi(C) for ∀i
4: while

∑
i
∑

j c
i
j >

∑
i ni · (1− pr) do

5: (i∗, j∗)← argmin(i,j)∈{(i,j)|cij=1} s
i
j · LSi(C; c

i
j = 0)

6: C ← C|ci∗j∗=0
7: update LSi∗ (C)
8: end while
9: return C

pruning (with C) at i-th layer as follows:

LSi(C) =
1

ni−1∑
j′=0

sij′ −
∑

j′∈{j′|ci
j′
=0,∀ci

j′
∈Ci}

sij′

. (15)

The proposed layer-wise sensitivity (LSi) basically follows
the theoretical foundation (Lemma 1) of the global channel
sensitivity but additionally regulates the excessive pruning on
a certain layer, by constructing LSi as a multiplicative inverse
of the sum on the remaining global channel sensitivity in
each layer. In other words, in terms of each layer, minimizing
LSi makes pruning the channels with small global channel
sensitivity first in each layer with its theoretical foundation.
In terms of inter-layer, excessive pruning on a certain layer
invokes excessive increase on LSi, and therefore the proposed
layer-wise sensitivity regulates risk of early layer removal by
trying to minimize LSi over the layers.
Accordingly, in order to apply such mechanism to all the

layers of target network, minimization of the product over all
LSi is set as the optimization objective (minimize

∏
i LSi).

Consequently, the channels with small global channel sensi-
tivity sij are pruned in each layer basically under its theoret-
ical foundation (Lemma 1), while such objective (minimize∏

i LSi) also prevents LSi = ∞ (i.e., pruning a whole layer)
for any layer i, which results in being robust on the task
performance degradation.

Therefore, based on this property, we propose a global
pruning scheme (s-ls-global) with layer-wise sensi-
tivity as described in Algorithm 1. The proposed scheme
searches channels to prune in whole network globally by
selecting a channel that shows minimum sij · LSi(C; c

i
j =

0) score channel-by-channel, iteratively updating layer-wise
sensitivity, where layer-wise sensitivity term on score regu-
lates to select a channel in excessively pruned layer on current
searching space.

B. LAYER-WISE ADAPTIVE PRUNING UNDER
COMPUTATIONAL CONSTRAINTS
As mentioned above, resource memory occupation size and
computation overhead (FLOP) of the DL model are mainly

VOLUME 11, 2023 7047

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 4. Layer-wise aspects of resource memory occupation size and
computation overhead on VGG-16 with CIFAR-10.

limited by hardware resources. To meet such computational
constraints by the proposed s-ls-global of Algorithm 1,
the appropriate pruned model can be searched by incre-
mentally controlling the target pruning ratio up to meet the
computational constraints. However, this scheme does not
consider the layer-wise aspects of computational character-
istics, where both the resource memory occupation and com-
putation overhead (FLOP) have different aspect each other
and also over layers as shown in Fig. 4. Accordingly, ineffi-
cient pruning case that just selecting links of low impact on
loss with low reduction effect of computational constraints
can occur, and it can disrupt the robustness of performance
degradation with regards to each computational constraint.

Therefore, from the idea of aforementioned layer-wise
sensitivity, we additionally propose a layer-wise adaptive
pruning scheme of determining the pruning ratio of each layer
that minimize network sensitivity

∏
i LSi(pri) while meeting

the computational constraints as shown in Fig. 5. Let pri
denotes pruning ratio on i-th layer that is equivalent to pri =
1−

∑
j c
i
j/ni, LSi(pri) denotes layer-wise sensitivity score of

i-th layer pruned with degree of pri by channel sensitivity
sij, and pr = [pr1, . . . , prM] denotes pruning policy for a
whole network with M layers. In turn, the resource memory
occupation constraint (mainly occupied by memory footprint
of intermediate feature maps on large input image) and the
computation overhead constraint can be written as following
equations respectively.∑

i

|xi|0ni(1− pri) ≤ rmem
∑
i

|xi|0ni (16)∑
i

(1− pri−1)(1− pri)COi ≤ rF
∑
i

COi (17)

where rmem, rF denotes the target constraint level to meet
hardware resource requirements (i.e., remaining ratio com-
paring to requiring quantity of original full model), and COi
denotes quantity of computation overhead in FLOP at i-th
layer. In the following, as LSi(pri) is convex, we can further
construct the optimization problem for each computational
constraint respectively, and address how to solve them.

1) OPTIMAL LAYER-WISE PRUNING RATIO FOR RESOURCE
MEMORY OCCUPATION CONSTRAINT
First, it is targeted to find the optimal layer-wise pruning ratio
pr that minimize

∏
i LSi subject to satisfy resource memory

FIGURE 5. Illustration of layer-wise adaptive pruning, the different
pruning ratio is allocated to each layer considering its layer-wise
sensitivity and memory/FLOP characteristics.

occupation constraint of (16). The optimal condition for this
optimization problem can be derived as following Theorem 1.
Theorem 1: The optimal layer-wise pruning ratios pr that

minimize
∏

i LSi, while meeting the memory occupation con-
straint of (16), satisfy the following condition:

LS ′1(pr1)

LS1(pr1)
1

|x1|0n1
= . . . =

LS ′M (prM)
LSM (prM)

1
|xM |0nM

, (18)

where LS ′i denotes the derivative.
Proof: The optimization problem targeted to solve is

finding optimal layer-wise pruning ratio pr that minimize∏
i LSi(pri) subject to (16). The corresponding dual problem

is written as:

L(pr, λ) =
M∏
i=1

LSi(pri)− λ
M∑
i=1

|xi|0ni(1− pri − rmem),

(19)

whereM denotes the total number of layers in the network.
The partial derivatives with regard to the pruning ratio of a

certain layer prk gives:

∂L
∂prk

=

M∏
i=1

LSi(pri)
LS ′k (prk)

LSk (prk)
+ λ|xi|0nk = 0,

∀k ∈ {1, . . . ,M}. (20)

From (20), it can be expand as:

−λ =

M∏
i=1

LSi(pri)
LS ′k (prk)

LSk (prk)
1

|xi|0nk
, ∀k ∈ {1, . . . ,M}.

(21)

Therefore, as
∏M

i=1 LSi(pri) term in (21) has same value for
∀k , following equation holds.

LS ′1(pr1)

LS1(pr1)
1

|x1|0n1
= . . . =

LS ′M (prM)
LSM (prM)

1
|xM |0nM

(22)

�
When denoting fmem,i(pri) =

LS ′i (pri)
LSi(pri)

1
|xi|0ni

, the optimal
pruning ratios can be practically searched by incrementally
varying the threshold variable ρ from zero to top until
meeting computational constraints at first as described in
Algorithm 2, where ε denotes incrementing unit. After the

7048 VOLUME 11, 2023

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

Algorithm 2 Optimal Layer-Wise Pruning Ratio Searching
Scheme for Memory Constraint: Mem-opt()
Input: Target memory constraint level rmem

1: cij← 1 for ∀i, j
2: calculate sij for ∀i, j
3: ρ ← 0
4: pr← [0, . . . , 0]
5: while

∑
i |xi|0ni(1− pri) > rmem

∑
i |xi|0ni do

6: ∀i, pri← f −1mem(ρ)
7: ρ ← ρ + ε

8: end while
9: return pr

layer-wise pruning ratio is determined, pruning by channel
sensitivity sij is conducted on each layer with its determined
pruning ratio pri.

Actually, the proposed pruning method for optimizing on
activation memory occupation can also be modified to sup-
port the optimization of weights memory occupation. When
denoting the size (memory occupation) of the weight param-
eters in i-th layer as wi, then the size of weight parameter is
reduced in proportion to the both pruning ratios (pri, pri−1) of
current layer and the previous layer as (1−pri−1)(1−pri)wi.
Accordingly, the weights memory occupation constraints that
is in the similar form of (17) is derived, and the optimization
can be derived likewise. However, for the conciseness of the
paper, only the optimization on memory occupation by the
intermediate feature maps is considered in this paper, and the
optimization on the weights memory occupation is remained
as future work.

2) OPTIMAL LAYER-WISE PRUNING RATIO FOR FLOP
CONSTRAINT
For the optimization on computation overhead (FLOP) con-
straint, the goal is to find optimal layer-wise pruning ratio
pr that minimize

∏
i LSi such that satisfies FLOP constraint

of (17). Likewise, the optimal condition for this optimization
problem for FLOP constraint can be derived as following
Theorem 2. In the theorem, pr0 denotes pruning ratio for input
image channel which is fixed to zero.
Theorem 2: The optimal layer-wise pruning ratios pr that

minimize
∏

i LSi, while meeting the computation overhead
constraint of (17), satisfy the following condition:

LS ′1(pr1)
LS1(pr1)

1
CO1(1−pr0)

= . . . =
LS ′M (prM)
LSM (prM)

1
COM (1−prM−1)

(23)
Proof: The optimization problem targeted to solve is

finding optimal layer-wise pruning ratio pr that minimize∏
i LSi(pri) subject to (17). The corresponding dual problem

is written as:

L(pr, λ) =
M∏
i=1

LSi(pri)

−λ

M∑
i=1

COi((1− pri)(1− pri−1)− rF), (24)

Algorithm 3 Optimal Layer-Wise Pruning Ratio Searching
Scheme for FLOP Constraint: Flop-opt()
Input: Target FLOP constraint level rF

1: cij← 1 for ∀i, j
2: calculate sij for ∀i, j
3: pr← [0, . . . , 0]
4: while

∑
i (1− pri−1)(1− pri)COi > rF

∑
i COi do

5: ρ ← fFLOP(pr1)
6: for i in {2, . . . ,M} do
7: pri← f −1FLOP,i(ρ)
8: end for
9: pr1← pr1 + ε

10: end while
11: return pr

whereM denotes the total number of layers in the network.
Partial derivatives gives:

∂L
∂prk

=

M∏
i=1

LSi(pri)
LS ′k (prk)

LSk (prk)
+ λCOk (1− prk−1) = 0,

∀k ∈ {1, . . . ,M}. (25)

From (25),

−λ =

M∏
i=1

LSi(pri)
LS ′k (prk)

LSk (prk)
1

COk (1− prk−1)
,

∀k ∈ {1, . . . ,M}. (26)

Therefore, as
∏M

i=1 LSi(pri) term has same value for ∀k ,
following equation holds, where pr0 denotes pruning ratio of
input image channel that is fixed to zero (pr0 = 0):

LS ′1(pr1)

LS1(pr1)
1

CO1(1− pr0)

= . . . =
LS ′M (prM)
LSM (prM)

1
COM (1− prM−1)

. (27)

�
From the optimal condition, as pr0 = 0, according

to the value of pr1, the others (pr2, . . . , prL) are decided
deterministically in sequential, and denote fFLOP(pri) =
LS ′i (pri)
LSi(pri)

1
COi(1−pri−1)

. The optimal pruning ratios can be prac-
tically searched by incrementally varying the pruning ratio
of the first layer pr1 from zero to one until meeting com-
putational constraints at first as described in Algorithm 3.
Likewise, after the layer-wise pruning ratio is determined,
pruning by channel sensitivity sij is conducted on each layer
with its determined pruning ratio.

IV. EVALUATION
In this section, the proposed methods are evaluated in two
main aspects: robustness of performance degradation on
pruning and feasibility on DL serving. Through the evalua-
tion, the robustness of performance degradation on various
test cases is observed, and the acceleration effect on comput-
ing resources is measured.

VOLUME 11, 2023 7049

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

A. EXPERIMENTAL SETTINGS
The proposed methods are compared with conventional chan-
nel pruning methods on three cases: VGG-16 [26] with
CIFAR-10 dataset [27], wide ResNet(WRN)-18 [1] with Cal-
tech101 dataset [28], and ResNet-101 [29] with UC Merced
satellite imagery dataset [30]. The detail settings for training
each case are described as follows.

1) VGG-16 WITH CIFAR-10 DATASET
One of cases, the evaluation is conducted on modified
VGG-16 architecture where an average pooling layer is
attached after the last convolutional layer, and only a single
fully connected layer with 512 input channel is connected at
the end for CIFAR-10 from the original VGG-16 architec-
ture [26]. Themodel is trained by using SGDwithmomentum
of 0.9, batch size of 128 and the weight decay rate of 0.0001,
and train 160 epochs in total. The initial learning rate is
configured to 0.1 and decayed by 0.1 at every 60 epochs. The
standard data augmentation (i.e., translation up to 4 pixels for
fitting to VGG-16, random horizontal flip and normalization)
is applied.

2) WRN-18 WITH Caltech101 DATASET
For WRN-18 with Calteach101 dataset, WRN-18 architec-
ture [1] is applied, where only a single fully connected layer at
the end is modified with 101 output channels for Caltech101
dataset. The model is trained by using SGD with momen-
tum of 0.9, batch size of 32 and the weight decay rate of
0.0001, and train 80 epochs in total. The initial learning rate
is configured to 0.1 and decayed by 0.1 at 60 epoch. For data
augmentation, only resizing of the input data to 224×224 size
is applied. In the dataset [28], 90% of total dataset is split to
training data and remaining 10% is used for test data.

3) ResNet-101 WITH UC MERCED SATELLITE IMAGERY
DATASET
Likewise, ResNet-101 architecture [29] modifying only the
last single fully connected layer with 21 output channels for
UCMerced satellite imagery dataset is used as third case. The
model is trained by using SGD with momentum of 0.9, batch
size of 128 and the weight decay rate of 0.0001, and train
160 epochs in total. The initial learning rate is configured to
0.1 and decayed by 0.1 at every 60 epochs. Only resizing the
input data to 256× 256 size is applied to data augmentation.
In the dataset [30], 90% of total dataset is split to training data
and remaining 10% is used for test data.

B. ROBUSTNESS OF PERFORMANCE DEGRADATION
The robustness of task performance degradation on the pro-
posed methods are evaluated over aforementioned 3 different
cases. The task performance is evaluated on 20 sparsity levels,
and the best top-1 test accuracy is measured as the perfor-
mance of the model trained from re-initialized state of pruned
model with respect to evaluation of lottery ticket hypoth-
esis [6]. Aforementioned three proposed pruning methods

(s-ls-global, mem-opt, flop-opt) are evaluated by
comparing two conventional methods as listed:

• snip-sum: Adapting method of SNIP [3], the
single-shot based weight pruning, to channel pruning
scheme by summing up weight-wise scores linked to
target channel [21].

• LTH-ch: Channel pruning form of evaluation in lottery
ticket hypothesis [6] that prunes channels according to
sum on magnitude of weight parameters linked to output
channel. To observe comparison on as much similar
training overhead as possible, single-step version of lot-
tery ticket hypothesis [6] is applied where the pruning is
conducted only once.

For LTH-ch, iterative pruning version of lottery ticket
hypothesis [6] was also conducted, which requires much
more training computation overhead than the single-step ver-
sion. However, as the results of iterative pruning version
show rather earlier layer removal than the single-step version
in channel pruning scheme, only the results of single-step
version (LTH-ch) are presented as representative one in the
paper.

To evaluate the robustness of performance degradation on
pruning, the shapes of performance (accuracy) with regards to
three aspects are observed: 1) the number of total remaining
channels, 2) remaining resource memory occupation size, and
3) remaining FLOP of pruned model.

The evaluation on VGG-16 model with CIFAR-10 dataset
is shown in Fig. 6. The results show that the proposed meth-
ods improves robustness of performance degradation compar-
ing to the conventional methods. Especially, s-ls-global
shows best performance on reducing the number of output
channels, mem-opt shows the best performance on reducing
resource memory occupation size, and flop-opt shows the
best performance on reducing computation overhead (FLOP)
that corresponds to the intent of each proposed method.

As an ablation study, in order to see the effect of proposed
layer-wise sensitivity, further evaluations on other variant
methods (s-local, s-global) are also conducted:

• s-local: Pruning each layer with same pruning ratio
by channel sensitivity sij in each layer.

• s-global: Searching channels to prune by channel
sensitivity sij globally in whole network.

As shown in the results (Fig. 6), s-ls-global shows
more robust to performance degradation than s-local
and s-global with the help of layer-wise sensitivity that
regulates excessive pruning on a certain layer. This effect
can be explicitly clarified by observing layer-wise pattern
of remaining fractions as shown in Fig. 7. The layer-wise
sensitivity smoothen the pruning pattern under high global
pruning ratio to regulate pruning a certain layer excessively
comparing patterns of s-ls-global and s-global. The
proposed flop-opt shows tendency of pruning 9, 10-th
layers more highly that contains higher FLOP than other
layers as observed in Fig. 4. Likewise,mem-opt prunes front
layers aggressively that contains larger resource memory

7050 VOLUME 11, 2023

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 6. Test top-1 accuracy results of pruning methods on VGG-16 for
CIFAR-10 with respect to (a) the number of remaining channels, (b)
remaining resource memory occupation size, and (c) remaining FLOP of
pruned model.

occupation size for intermediate feature maps. In addition,
in accuracy results, pruningwith channel sensitivity itself also
shows higher performance than snip-sum and LTH-ch
with regards to the number of remaining channels, as stated
in theoretical validity analysis including Lemma 1.

Moreover, when comparingmem-opt ands-ls-global
on the aspects to the number of remaining channels and
resource memory occupation size, mem-opt shows lower
robustness of performance degradation on reducing the num-
ber of channels, but shows higher robustness on reducing
resource memory occupation size. This implies that the

FIGURE 7. Fraction of remaining channels on each layer of VGG-16 for
CIFAR-10 pruned by each comparing method ((a) mem-opt, (b) flop-opt,
(c) s-ls-global, (d) s-global) on several overall degrees of pruning.

proposed mem-opt can select efficient channels containing
high layer-wise memory occupation reducing effect even if
its channel sensitivity is high. The similar effect also corre-
sponds to comparison of flop-opt and s-ls-global.

Fig. 8 shows results on WRN-18 network with Caltech101
dataset. Likewise, in the results, the proposed methods show
higher robustness of performance degradation on reducing
the number of channels, resource memory occupation, com-
putation overhead (FLOP). However, for reducing FLOP,
mem-opt shows more robustness of performance degrada-
tion than flop-opt. It can be caused by difference on
calculating effect of FLOP reduction (23) on convolutional
layers at residual links in the network as we apply shared
output channel masking on residual links and just calculate
FLOP of them using only one pruning ratio of the most
fore-headed previous layer among several candidate layers.

Evaluation on deeper residual network (ResNet-101) with
satellite imagery dataset is also conducted. As shown in
Fig. 9, the proposed methods show higher robustness of
performance degradation on all reducing aspects. However,
likewise to the case of WRN-18, mem-opt and flop-opt
can not show their optimal decision on high reduction level
of computational properties respectively as accumulation of
the mis-calculation on each reducing property effect becomes
higher on this network with much more residual links.
Though, the proposed s-ls-global can highly endure
performance degradation and can be applied instead of them
on such case.

In Fig. 8 and 9, the layer removal occurs at an earlier
sparsity than the result of CIFAR-10 when pruning with only
the criterion of global channel sensitivity sij (s-global),
which shows more distinct risk of early layer removal on
global channel sensitivity sij. In the results,s-global shows
comparable robustness of task performance degradation

VOLUME 11, 2023 7051

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 8. Test top-1 accuracy results of pruning methods on WRN-18 for
Caltech101 with respect to (a) the number of remaining channels, (b)
remaining resource memory occupation size, and (c) remaining FLOP of
pruned model.

to the other proposed methods (mem-opt, flop-opt,
s-ls-global) until the layer removal occurs, but the layer
removal on s-global occurs even earlier than LTH-ch
or snip-sum. In contrast to such aspects, through addi-
tionally considering the proposed layer-wise sensitivity, the
proposed mem-opt, flop-opt and s-ls-global show
much more robustness on the task performance degradation
by regulating the early layer removal. Moreover, in the case
of s-local, early layer removal did not occur, but the
task performance is mostly degraded more than the pro-
posed mem-opt, flop-opt and s-ls-global for each
sparsity level, which implies the importance of considering
layer-wise computational characteristics together.

FIGURE 9. Test top-1 accuracy results of pruning methods on ResNet-101
for UC Merced satellite imagery dataset with respect to (a) the number of
remaining channels, (b) remaining resource memory occupation size, and
(c) remaining FLOP of pruned model.

C. FEASIBILITY OF DL SERVING WITH PRUNING
1) PRACTICAL ENVIRONMENT OF ON-BOARD EMBEDDED
SYSTEM
In order to evaluate the feasibility of the proposed meth-
ods on the restricted computing environments such as satel-
lite on-board computing system [11], the embedded system
board [31] in which inference of the deep learning models
can be served in low power management is used as a test
environment. Fig. 10 shows the hardware prototype of our
embedded system board [31], and it consists of NVIDIA
Jetson Nano chipset for managing host/GPU and ASIC chip
that is designed to process the inference of the deep learning
models. In the system, 4GB DDR4 memory is available,

7052 VOLUME 11, 2023

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

FIGURE 10. Developed prototype of on-board system [31] with proposed layer-wise channel pruning optimization model.

TABLE 2. Effect of acceleration on the inference processing time under
same batch size.

and ASIC chip is prototyped under Samsung foundry 28-nm
CMOS process with 200mW power consumption and mini-
mum 7.5W in the entire on-board system.

The custom ASIC chip [31] mainly consists of
shared memory and convolutional/vector processor, and it
interworks with the programmable logic controller and the
external memory to process the DL inference task. In the
programmable logic controller, the task of DL inference is
partitioned into subtasks of size that the intrinsic resources
can accommodate, and the subtasks are processed sequen-
tially. The partitioned subtasks are prepared in external mem-
ory, and then transferred to the shared memory of ASIC
chip with the management of programmable logic controller.
After that, each subtask is processed by convolutional/vector
processor, where the convolutional processor supports var-
ious settings of convolutional operations in parallel using
the multiple array processing units, and the vector processor
supports operations of MaxPool, AvgPool, batch normal-
ization, ReLU, and GEMM. After processing each subtask,
programmable logic controller loads the results from the
shared memory of ASIC chip to external memory. Further
details of the prototype onboard system are provided in [31].

2) ACCELERATION EFFECT OF THE PROPOSED METHODS
ON TEST ENVIRONMENT
The feasibility of the proposed methods on DL serving is also
conducted. Some methods evaluated on previous subsection
are also applied in this evaluation, and their first few abbrevi-
ations are denoted as in Table 2 and 3. The test is conducted

TABLE 3. Effect of throughput improvement for DL serving.

on ResNet-101 for satellite imagery dataset which is the
most practical application, and the latency for processing
inference of the pruned model is measured by averaged from
100 trials under the developed on-board system (described in
Section IV-C1) with 1024× 1024 RGB input image size.
First, the effect of acceleration on inference processing

by setting same batch size (=16) over comparing methods
is evaluated, and the resource memory occupation size for
each case is also measured together. In each comparing
method, the most highly pruned model that shows equal or
greater performance to original model as target deploying
model is selected to deploy on the target hardware resource.
As shown in Table 2, the proposed mem-opt can achieve the
lowest resource memory occupation size while maintaining
its accuracy, and the proposed flop-opt can achieve the
highest speed up on inference latency under same batch size
setting by largely reducing computation overhead. Although
mem-opt shows relatively lower speed up on inference
latency than flop-opt and s-ls-global as it is mainly
targeted to reduce memory occupation size, it achieves higher
speed up than the conventional method (LTH-ch) that prunes
from pretrained state like lottery ticket hypothesis study [6],
and can largely reduce resource memory occupation size
keeping the accuracy which is more feasible in the aspect of
enabling deployment on restricted computing environments
like on-board system that has severe memory occupation
constraint.

The effect of the proposed methods on improving through-
put for DL serving with the same deploying models used
in Table 2 is also evaluated. In each method, the maximum

VOLUME 11, 2023 7053

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

available batch size that can be deployed into the target
hardware resource for DL inference serving is searched by
manual trials, which is practically applied in the study of
DL serving [32]. Along with the maximum batch size, the
throughput (the number of processed request images per
second) is also measured on each test case. As shown in
Table 3, the proposed methods show higher improvement
than conventional pruning method of lottery ticket hypothesis
framework, and flop-opt achieves highest improvement
on throughput by largely reducing inference latency time.

The acceleration effect on training phase is already pre-
sented in previous section with Table 1. According to the
result, the proposed method (flop-opt) shows the smallest
computing overhead also on the total training phase, but can
not show as much accelerating effect as in inference latency
due to training with configured batch size does not fully
utilize the resource on our test environment, and can expect
further acceleration by enabling larger available batch size
with the help of reducing memory occupation.

V. CONCLUSION
As the channel pruning generally shows severe performance
degradation than weight pruning, the conventional meth-
ods mainly addressed how to efficiently recover the per-
formance degradation from pruning under pretrained state,
which requires heavy training overhead in double (pretraining
and fine-tuning). In this paper, we propose a new scheme of
layer-wise channel pruning that can sophisticatedly reflect
each layer’s characteristics and can be applied in a single-shot
manner to alleviate computational overhead of pretraining
by just observing dataset only once. Moreover, in order
to improve robustness of performance degradation, we also
propose a layer-wise sensitivity for single-shot based prun-
ing scheme, and extend to optimization problems for two
main computational constraints in layer-wise pruning deci-
sion scheme with proposing practical methods to find opti-
mums. From the empirical evaluation, the proposed methods
show robustness on performance degradation in aspects of
reducing the number of channels, resource memory occu-
pation, and computation overhead (FLOP) in deploying and
serving DLmodel. The proposed methods also show feasibil-
ity on DL serving under constrained computing environments
by reducing memory occupation, providing higher accelera-
tion effect on inference latency and throughput improvement
while maintaining the accuracy performance, and reduce
computing overhead of training.

ACKNOWLEDGMENT
(Minsu Jeon and Taewoo Kim contributed equally to this
work.)

REFERENCES
[1] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ in Proc. Brit.

Mach. Vis. Conf., 2016, pp. 1–15.
[2] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-

time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[3] N. Lee, T. Ajanthan, and P. H. Torr, ‘‘SNIP: Single-shot network pruning
based on connection sensitivity,’’ in Proc. ICLR, 2019, pp. 1–15.

[4] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, ‘‘Pruning neural
networks without any data by iteratively conserving synaptic flow,’’ in
Proc. NeurIPS, 2020, pp. 1–13.

[5] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 243–254, 2016.

[6] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ in Proc. ICLR, 2019, pp. 1–42.

[7] R. Liu, Y. Cao, H. Chen, R. Guo, andM.Yoshikawa, ‘‘Flame:Differentially
private federated learning in the shuffle model,’’ in Proc. AAAI, 2020,
pp. 8688–8696.

[8] W.-J. Kim and C.-H. Youn, ‘‘Lightweight online profiling-based config-
uration adaptation for video analytics system in edge computing,’’ IEEE
Access, vol. 8, pp. 116881–116899, 2020.

[9] D. Zhu, D. Song, Y. Chen, C. Lumezanu, W. Cheng, B. Zong, J. Ni,
T. Mizoguchi, T. Yang, and H. Chen, ‘‘Deep unsupervised binary coding
networks for multivariate time series retrieval,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 34, 2020, pp. 1403–1411.

[10] H. Kim, K. Lee, C. Lee, S. Hwang, and C.-H. Youn, ‘‘An alternating
trainingmethod of attention-based adapters for visual explanation of multi-
domain satellite images,’’ IEEE Access, vol. 9, pp. 62332–62346, 2021.

[11] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati,
and L. Fanucci, ‘‘CloudScout: A deep neural network for on-board cloud
detection on hyperspectral images,’’ Remote Sens., vol. 12, no. 14, p. 2205,
Jul. 2020.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[13] Z. Zhao, K. M. Barijough, and A. Gerstlauer, ‘‘DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 11, pp. 2348–2359, Nov. 2018.

[14] B. Akin, Z. A. Chishti, and A. R. Alameldeen, ‘‘ZCOMP: Reducing DNN
cross-layer memory footprint using vector extensions,’’ in Proc. 52nd
Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2019, pp. 126–138.

[15] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, ‘‘An evaluation of the NVIDIA TX1 for supporting
real-time computer-vision workloads,’’ in Proc. IEEE Real-Time Embed-
ded Technol. Appl. Symp. (RTAS), Apr. 2017, pp. 353–364.

[16] A. Shawahna, S. M. Sait, and A. El-Maleh, ‘‘FPGA-based accelerators of
deep learning networks for learning and classification: A review,’’ IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[17] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning convo-
lutional neural networks for resource efficient inference,’’ in Proc. ICLR,
2017, pp. 1–17.

[18] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. ICLR, 2016, pp. 1–14.

[19] M. A. Rumi, X. Ma, Y. Wang, and P. Jiang, ‘‘Accelerating sparse CNN
inference on GPUs with performance-aware weight pruning,’’ in Proc.
ACM Int. Conf. Parallel Architectures Compilation Techn., Sep. 2020,
pp. 267–278.

[20] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very deep
neural networks,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1389–1397.

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ in Proc. ICLR, 2017, pp. 1–13.

[22] M. Risso, A. Burrello, F. Conti, L. Lamberti, Y. Chen, L. Benini, E. Macii,
M. Poncino, and D. Jahier Pagliari, ‘‘Lightweight neural architecture
search for temporal convolutional networks at the edge,’’ IEEE Trans.
Comput., early access, May 26, 2022, doi: 10.1109/TC.2022.3177955.

[23] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu,
T. Xu, K. Chen, P. Vajda, and J. E. Gonzalez, ‘‘FBNetV2: Differentiable
neural architecture search for spatial and channel dimensions,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 12965–12974.

[24] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi,
‘‘MorphNet: Fast & simple resource-constrained structure learning of deep
networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1586–1595.

7054 VOLUME 11, 2023

http://dx.doi.org/10.1109/TC.2022.3177955

M. Jeon et al.: Channel Pruning Optimization With Layer-Wise Sensitivity in a Single-Shot Manner

[25] L. G. Valiant, ‘‘A theory of the learnable,’’ Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, 1984.

[26] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. ICLR, 2015, pp. 1–14.

[27] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[28] L. Fei-Fei, R. Fergus, and P. Perona, ‘‘One-shot learning of object
categories,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, Apr. 2006.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] Y. Yang and S. Newsam, ‘‘Bag-of-visual-words and spatial extensions
for land-use classification,’’ in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst. (GIS), 2010, pp. 270–279.

[31] T. Kim, M. Jeon, C. Lee, J. Kim, G. Ko, J.-Y. Kim, and C.-H. Youn,
‘‘Federated onboard-ground station computing with weakly supervised
cascading pyramid attention network for satellite image analysis,’’ IEEE
Access, vol. 10, pp. 117315–117333, 2022.

[32] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose,
A. Krishnamurthy, and R. Sundaram, ‘‘Nexus: A GPU cluster engine
for accelerating DNN-based video analysis,’’ in Proc. 27th ACM Symp.
Operating Syst. Princ., Oct. 2019, pp. 322–337.

MINSU JEON received the B.S. degree in
electronic engineering from Sogang University,
in 2016, and theM.S. degree in electrical engineer-
ing from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2017, where he is currently pursuing the Ph.D.
degree in electrical engineering. His research
interests include deep learning (DL) applica-
tion/model, DL model compression, DL serving,
and high-performance computing systems.

TAEWOO KIM received the B.S. degree in elec-
trical engineering from Kyungpook National Uni-
versity, Deagu, South Korea, in 2015, and theM.S.
degree in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2017, where
he is currently pursuing the Ph.D. degree in electri-
cal engineering. His research interests include the
deep learning (DL) framework, GPU computing,
and interactive learning.

CHANGHA LEE (Member, IEEE) received
the B.S. degree in electronic engineering from
Hanyang University, Seoul, South Korea, in 2018,
and the M.S. degree in electronic engineering
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2020, where he is currently pursuing the Ph.D.
degree. Since 2018, he has been a member of the
Network and Computing Laboratory, KAIST. His
current research interests include deep learning

acceleration platform and high-performance edge-cloud computing systems.

CHAN-HYUN YOUN (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees in electron-
ics engineering from Kyungpook National Uni-
versity, Daegu, South Korea, in 1981 and 1985,
respectively, and the Ph.D. degree in electrical and
communications engineering from Tohoku Uni-
versity, Japan, in 1994. Before joining the Univer-
sity, from 1986 to 1997, he was the Head of the
KT Telecommunications Network Research Labo-
ratories, High-Speed Networking Team, where he

had been involved in the research and developments of centralized switching
maintenance systems, high-speed networking, and ATM networks. Since
1997, he has been a Professor with the School of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
South Korea. He was an Associate Vice-President of office of planning and
budgets at KAIST, from 2013 to 2017. He is currently the Director of the Grid
Middleware Research Center and XAI Acceleration Technology Research
Center, KAIST, where he is developing core technologies that are in the areas
of high-performance computing, explainable AI systems, satellite imagery
analysis, AI acceleration systems, and others. He wrote a book on Cloud
Broker and Cloudlet for Workflow Scheduling (Springer, 2017). He served
many international conferences as a TPC member. He was the General
Chair of the 6th EAI International Conference on Cloud Computing (Cloud
Comp 2015), KAIST, in 2015. He was a Guest Editor of IEEE WIRELESS

COMMUNICATIONS, in 2016.

VOLUME 11, 2023 7055

