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ABSTRACT With advances in NanoSat (CubeSat) and high-resolution sensors, the amount of raw data to
be analyzed by human supervisors has been explosively increasing for satellite image analysis. To reduce
the raw data, the satellite onboard AI processing with low-power COTS (Commercial, Off-The-Shelf) HW
has emerged from a real satellite mission. It filters the useless data (e.g. cloudy images) that is worthless
to supervisors, achieving efficient satellite-ground station communication. In the application for complex
object recognition, however, additional explanation is required for the reliability of the AI prediction due
to its low performance. Although various explainable AI (XAI) methods for providing human-interpretable
explanation have been studied, the pyramid architecture in a deep network leads to the background bias
problem which visual explanation only focuses on the background context around the object. Missing
the small objects in a tiny region leads to poor explainability although the AI model corrects the object
class. To resolve the problems, we propose a novel federated onboard-ground station (FOGS) computing
with Cascading Pyramid Attention Network (CPANet) for reliable onboard XAI in object recognition.
We present an XAI architecture with a cascading attention mechanism for mitigating the background bias
for the onboard processing. By exploiting the localization ability in pyramid feature blocks, we can extract
high-quality visual explanation covering the both semantic and small contexts of an object. For enhancing
visual explainability of complex satellite images, we also describe a novel computing federation with the
ground station and supervisors. In the ground station, active learning-based sample selection and attention
refinement scheme with a simple feedback method are conducted to achieve the robustness of explanation
and efficient supervisor’s annotation cost, simultaneously. Experiments on various datasets show that the
proposed system improves task accuracy in object recognition and accurate visual explanation detecting
small contexts of objects even in a peripheral region. Then, our attention refinementmechanism demonstrates
that the inconsistent explanation can be efficiently resolved only with very simple selection-based feedback.

INDEX TERMS XAI, visual explanation, satellite image analysis, human-in-the-loop.

I. INTRODUCTION
The modern small satellites including CudbeSat are becom-
ing interesting technologies in the space industry. As the
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revisit period of the acquired raw images is getting shorter,
complex applications (e.g. object tracking, detection, etc.) in
object recognition are interested in a research field. However,
the massive amount of raw data makes it difficult for the lim-
ited supervisors to analyze an inspection of all image patches
over a broad area (covering>km in a raw image). To assist the
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FIGURE 1. Characteristics of satellite images make it difficult for a DL
model to infer accurate prediction and visual explanation. Each image
may contain scale-variant and rotation-equivariant objects with the same
category (airplane). And, training dataset includes multiple image
resolutions due to the optical sensor, altitude, etc.

supervisors, the DL-based image analysis has emerged [1],
[2], [3], [4], [5], [6]. By providing the prediction results for
object recognition, the DL model enables to efficiently ana-
lyze the large-scale data with high accuracy. Furthermore, due
to the advent of low-power AI computing HW such as visual
processing unit (VPU) and field programmable gate array
(FPGA), a DL-based satellite onboard system has recently
been introduced in a satellite image analysis. The onboard
computing is important for efficient satellite-ground station
computing by filtering unnecessary images in advance. Typi-
cally, the onboard DL system, CloudScout [7], filters cloudy
images having no information to analyze using simple binary
classification. In complex applications, however, the predic-
tion results of a DL model still remain ambiguous, especially
in object recognition. The false negative error is a challenging
issue for the reliability of the onboard AI system. Explainable
AI (XAI) technique has the key to a reliable AI-based sys-
tem by providing visual explanation of the prediction for a
black-box DL model. It represents the form of saliency maps
highlighting the pixels that are important for the DL model to
predict the class of a target object. These human-interpretable
results enable humans to expect the model behavior for other
samples and sometimes retrain (refine) the model for improv-
ing performance.

Satellite images have low resolution (e.g., > 0.5m2 per
one pixel) compared with other object recognition images
due to the long distance between the optical sensors and
target regions. Fig. 1 shows the characteristics of top-view
images: rotation-equivariant and scale-variant objects. It also
contains different quality images due to the sensor resolution
and environmental reasons (e.g. cloudiness, sunlight, etc.).
That makes it difficult for DL models to predict the class
of a target object as well as visual explanation accurately.
In the satellite images, the background has a large portion
of the entire image. Accordingly, if a certain class is highly
involved with the background (e.g., ship – ocean), the model
could be trained to recognize objects for the class based on
the only background rather than the object’s own character-
istics, called the background bias problem [8], [9]. In partic-
ular, this problem is critical due to small object sizes and a

high correlation between background and object. The wrong
visual explanation highlighting only on background context
reduces the reliability of the mission-critical application in
the satellite system. In addition, due to the high computation
overhead of the XAI model and no supervision for output
visual explanation, the onboard computing system itself can-
not refine the model for explainability, which supervisors and
rich computing resources in the ground station are required.

To resolve these problems, we propose a novel federated
onboard-ground station (FOGS) computing system for satel-
lite image analysis. Our system deals with the reliability of
complex object recognition applications in satellite images,
which has not been addressed in the conventional onboard AI
system [7]. We are attempting to handle this problem through
the development of a novel satellite image analysis system
that cooperates with onboard-ground station and supervi-
sors. Different from the conventional onboard AI system [7],
we build a sustainable onboard XAI-based analysis system
by iteratively updating the refinement of the analysis model
between the onboard and ground station. We describe a novel
XAI model, cascading pyramid attention network (CPANet),
for visual explanation of satellite image analysis.We consider
the attention mechanism from the multiple layers in CNN to
detect small objects in visual explanation. To propagate useful
context to the following layers, we connect the attention
branch of each layer in a cascading manner. Then, to cor-
rect inconsistent explanation from the onboard prediction,
we describe an attention refinement scheme with supervisors
in the ground station. The ground system conducts the data
sampling to select inconsistent explanation in the interme-
diate layers with different representation, in advance. Then,
with the selection-based feedback mechanism, we describe
the refinement scheme of the our XAI model.

II. RELATED WORK AND PROBLEM DESCRIPTION
A. ONBOARD COMPUTING SYSTEM FOR SATELLITE
IMAGE ANALYSIS
Modern satellite system contains low-power commercial off-
the-shelf (COTS) accelerators (e.g FPGA, embedded GPU,
and VPU) for onboard AI processing. In [10], the authors
introduce low-powerNVIDIA-TX1 for target recognition and
segmentation using CNN. In [11], the authors claim that the
DL model can be a promising solution in terms of com-
munication cost in the satellite and facilitating navigation.
They conduct a detailed analysis of deploying the DL model
on COTS HW used in the satellite, and a case study of
space-related applications such as cloud detection and object
tracking.

As the on-orbit AI processing, CloudScout [7] is used
for onboard image filtering for useless data as shown in
Fig. 2. From the hyperspectral images, the onboard AI model
performs cloud segmentation via the convolutional encoder-
decoder network. The result is binary classification (cloudi-
ness or not) for each pixel. If the captured image contains
more than 70% of cloud pixels, the system drops the image
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FIGURE 2. Onboard AI processing in CloudScout [7]. With low-power Intel
Myriad 2 HW, it filters unnecessary cloudy images for reducing the
communication bottleneck and supervisor’s annotation cost.

since it has no information to analyze. By filtering the useless
images on the onboard side, it can reduce the communica-
tion and supervisor’s annotation costs between the satellite
and the ground station. Equipped with HyperSouct2 flight
model, they evaluated the AI-based system in the real satel-
lite environment, 8-Sat1 mission. In addition, NASA and
Qualcomm [12], [13] cooperate the development of onboard
AI HW with Qualcomm Snapdragon and Intel Movidius
Myriad X Processor for NASA jet propolusion laboratory
(JPL) application. They evaluated SAR image processing
with the U-Net model [14] and mars image analysis with
AlexNet [15] and DeepLabv3 architecture [16]. They showed
promising task performance, especially % of missed pixels
(less than 10%). However, in the case of complex application
such as multi-label classification and object detection, an AI
model still remains in question due to its low performance
compared to binary classification, resulting in the critical
error of false negatives (about 4% FN error of binary clas-
sification in CloudScout).

B. XAI TECHNIQUES FOR PROVIDING VISUAL
EXPLANATION
To interpret a black-box DLmodel in image processing, there
are several methods for extracting a saliency map explain-
ing the basis of the model prediction. Among them, we do
not handle the perturbation-based methods [17], [18], [19]
which need to process randomly perturbed images repeatedly,
it takes more than a few times processing than the prediction
process. Therefore, it is not suitable in an onboard environ-
ment with limited computing power.

As widely used a class activation map method, CAM [20]
was developed as an ancestor of the class activation mapping
family; it produces visual explanation results by weighting
the feature maps (after the top convolution layer) from global
averaging pooling (GAP) [21] and the fully-connected layer,
for a target class. To avoid architectural restriction aboutGAP,
gradient-based approaches have been introduced [22], [23].
These approaches can interpret the single-layer representa-
tion (normally the top convolution layer). LayerCAM [24]
fuses the global explanation from multiple local explanations
of the intermediate layers of CNN, which take advantage
of localization ability in the low-level layers. However, this
approach still has limitations due to the simple fusionmethod,
which just performs an element-wise maximization of local
explanations. In this case, the redundant information may
contain producing the ambiguous result.

These post-hoc explanation methods except CAM still
require additional operations (back-propagation for gradient
computation) to generate visual explanation. And they just
interpret the output feature maps from the prediction result,
not any improvement in task performance (i.e. accuracy
or precision). Meanwhile, instead of considering post-hoc
explanation, some of the very recent studies such asABN [25]
and LFI-CAM [26] take response-based approaches similar
to CAM [20]. They extend CAM by introducing an atten-
tion mechanism that is sub-branch from the CNN backbone,
which improves visual explainability and allows end-to-end
training (i.e., no need for any network architecture modifi-
cation or fine-tuning). By doing so, these attention branch
methods not only enable to generate visual explanation within
feed-forward passes but also achieve to overcome the draw-
backs of CAM, mentioned above. On the contrary, they are
limited to the top convolution layer to generate visual expla-
nation while gradient-based methods can extract any layer
in the backbone CNN. In the satellite image, the top layer
interpretation leads to the ambiguous explanation due to the
background bias problem in object recognition. This problem
makes visual explanation focus on the background pixels
around a target object. We describe describing the details of
this phenomenon in Section II-D.

On the other hand, several studies about the pyramidal
attention networks [27], [28], [29] have been conducted to
utilize the rich context of multiscale feature maps, but they
only handle the feature attention to improve the task perfor-
mance. In [30], the authors consider the various episodes from
the multi-layer attention modules to generate reliable visual
explanation in satellite images.

C. EXPLAINABILITY ENHANCEMENT WITH
HUMAN-IN-THE-LOOP
The concept of training a model by incorporating human
knowledge and experience has received attention to over-
come the lack of training data and the high cost of annota-
tion. This is called human-in-the-loop (HITL), which human
experts provide feedback for achieving better performance.
Our XAI-based satellite image analysis, on the other hand,

VOLUME 10, 2022 117317



T. Kim et al.: Federated Onboard-Ground Station Computing With Weakly Supervised CPANet for Satellite Image Analysis

FIGURE 3. Scenario of the proposed federated XAI computing of onboard-ground station in satellite image analysis.

considers human cognition on improving model explainabil-
ity rather than task performance. There are some studies
that utilize HITL techniques to improve the feature expla-
nation ability in computer vision [30], [31]. Their goal is to
obtain not only accurate predictions but also proper expla-
nations for the predictions. They collect human annotation
which highlights ‘‘important regions’’ for decision-making.
By doing so, the model trained with human knowledge in
their parameters. For example, human importance-aware net-
work tuning (HINT) [32] proposes a ranking loss between
human-based importance scores [8] and gradient-based sen-
sitivities. In self-critical reasoning (SCR) [33], the model
penalizes itself for the wrong answers on the important region
that most influences the prediction of the correct answer.
However, these approaches take a huge time to generate the
human attention map, scoring the importance of all pixels.
In the case of satellite image analysis, it is difficult to annotate
an attentionmap over all patches in a raw image (> km2 per an
image). To adapt HITL to satellite image analysis efficiently,
our approach is to use weak supervision (i.e. simple feed-
back for an attention map) rather than full supervision (i.e.
humanly create a ground-truth attention map for every pixel)
for visual explainability.

D. PROBLEMS ON ADAPTING XAI METHODS TO
ONBOARD
In this section, we argue the technical issues of existing
XAI methods adapting satellite images, especially in terms of
visual explainability, and sustainable system issues exploiting
supervisors and computing resources in the ground station.

In practice, the layered architecture of CNN consists of
the pyramid feature blocks, group of convolutional layer.
Passing the pyramid feature block, the spatial dimension (i.e.
width and heights) of the output feature map is reduced and
the number of channels is increased due to the computation
efficiency and extraction of semantic contexts along with

FIGURE 4. Background bias problem of conventional visual explanation
based on top convolution layer. The trained DL model infers the
ground-truth label by focusing background context around the target
objects.

the channel. As mentioned in Section II-B, existing attention
branch and post-hoc explanation methods only consider the
feature map of the top convolution layer to generate visual
explanation due to its rich semantic context. However, they
may miss the contexts in the low-level features by passing
through pooling layers. Due to this spatial information loss,
visual explanation only from the high-level feature map often
fails to detect the small context or boundary of an object.
It is critical in terms of explainability, especially in satellite
images. As a result, generated visual explanation focuses on
the background pixels, not on the target object. We refer this
phenomenon as the background bias, which already men-
tioned in object recognition researches [8], [9].

To verify the background bias in a satellite image, we con-
ducted the experiment training CNNwith the pyramid feature
blocks [34] into a satellite image dataset [35]. We resized
the RGB input image to 224× 224× 3 and observed the
visual explanation by the post-hoc explanation method [22]
widely used in anXAI field. Fig. 4 shows the background bias
problem of the visual explanation method using the top con-
volution layer. We let an input image as x and its ground-truth
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FIGURE 5. Spatial information loss caused by spatial pooling operations
in a pyramid network. The highlighted region shows valuable context
which is missed in visual explanation of top convolution layer.

label (i.e. category) as ygt . The trained model corrects the
category of all input images with high confidence. Form its
visual explanation of ygt , however, the model determines the
category, not focusing on semantic context (i.e. airplane, ship,
and car) but on background information (i.e. airstrip, ocean,
and asphalt). The result implies that the trained model could
fail to correct the object’s category and visual explanation if
the background of an input image is not commonly appeared
with the target objects (e.g. the airplane passing by the ocean).

To identify the reason why this background bias occurs,
we extract visual explanation of intermediate convolution
layers in the pyramid feature blocks. The result is shown in
Fig. 5. In the pyramid feature blocks in CNN, there are spatial
pooling operations between the blocks, which reduces the
width and height of the feature map. The lower convolution
layers seem to only focus on the small contexts over a local
region (see Residual Block 1 and 2). As mentioned in Layer-
CAM [24], these layers can highlight the accurate boundary
information although they cannot explain the entire context of
the input image. In the contrast, visual explanation of Resid-
ual Block 3 seems to highlight the semantic contexts over the
whole region of the input imagewhile containing some redun-
dant background areas. In the top convolution layer, how-
ever, the model fails to explain the valuable contexts highly
biased to the background. This comes from the spatial pooling
operations missing features about ‘‘boat’’. In this example,
it seems to be the proper choice to select a visual explanation
of residual block 3 for the highest explainability. In summary,
visual explanation only using the top convolution layer cannot
guarantee explainability to human supervisors. Our approach
is to strengthen visual explanation of the top convolution
layer by combining useful context for accurate boundaries
and small objects in the lower convolution layers. To this end,
we present a novel attention branch method with multiple
attention blocks connected in a cascading manner.

Furthermore, to ensure the reliability of complex object
recognition tasks, continuous updates of the model (i.e. train-
ableweights) according to newly captured images in the satel-
lite are required. The refinement (retraining) of the trained

model is not suitable for processing in the onboard com-
puting in terms of no supervision for explanation and com-
puting capability for retraining. The onboard system cannot
acquire the ground truth visual explanation of the captured
images. In addition, retraining an XAI model needs pow-
erful computing resources (e.g. GPUs) and a huge time to
complete the (re)training. This is not suitable in the onboard
computing environment with a limited computing constraint.
Furthermore, the manual correction on each pixel of visual
explanation [32], [33] also needs a huge amount of labeling
cost. To handle these issues, we propose a concept of fed-
erated XAI computing framework for the onboard-ground
station. Fig. 3 is overall scenario of the proposed concept.
In the onboard, an XAI-based object recognition model is
performed for the captured images from the satellite. Note
that the filtering criteria in the onboard is determined by users,
so we do not handle this. The prediction results including the
object’s class and its visual explanation transmit to the ground
station. In the ground station, the samples with ambiguous
visual explanation are automatically classified by the active
learning-based sampling. Then, an XAI model is retrained
based on the supervisor’s feedback to enhance the visual
explainability. The updated weights transmit the onboard HW
to process new incoming images, and then repeat the entire
procedure.

III. THE PROPOSED METHOD
In this section, we propose the FOGS computing system for
an XAI-based satellite image analysis. Through the system,
we are going to improve the visual explainability of the XAI
model to provide reliable object recognition on the satellite
onboard. Our approach is to consider the computing inter-
action mechanisms between a satellite onboard HW and the
ground station, and ensure that the XAI model is trained
with the supervisor’s knowledge using a simple feedback
mechanism, simultaneously.

A. OVERALL PROCEDURE OF FEDERATED
ONBOARD-GROUND STATION COMPUTING
Fig. 6 shows the overall architecture of the proposed
onboard-ground station federated computing framework.
In the proposed framework, the onboard system directly exe-
cutes the inference of an XAI model according to the cap-
tured raw images from the satellite. It outputs the prediction
result of target objects (e.g. ‘‘airplane’’, ‘‘ship’’, etc.) and
its visual reason (i.e. explanation) in the form of a saliency
map. From the input image x and the trained black-box CNN
model, we denote visual explanation of the predicted class as
VEij(x), feature importance factor of (i, j) pixel in the input
image. It can be said that a (i, j) pixel with a high VEij(x)
value contributes to the prediction result, significantly. Based
on the prediction result of the XAI model, the onboard
system determines the raw images to be dropped (i.e. not
informative images related to the mission). Different from
CloudScout [7], our system can handle more complex image
analysis tasks (e.g. object recognition, scene classification,
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FIGURE 6. Overall architecture of the proposed onboard-ground station federated XAI computing with cascading pyramid
attention and weakly supervised refinement.

etc.) via the XAI model. Once images and the analysis results
are transmitted to the ground station, the supervisors analyze
the correction of visual explanation. Since the onboard XAI
processing should be reliable, especially preventing critical
error (in the case of FN error in image selection), the ground
station refines the trained XAI model by inducing the super-
visor’s knowledge about the target prediction. We consider
the annotation cost of the supervisor when correcting visual
explanation while enhancing visual explainability in terms of
consistency. We describe the following methods based on the
onboard-ground station federation with the supervisors.

1) ONBOARD PROCESSING WITH CPANet
First, we present a novel attention branch method, cascading
pyramid attention network (CPANet), to mitigate a quality
degradation of visual explanation due to the background bias
problem [8], [9]. As presented in Section II-B, we identify
a critical failure in visual explanation of the conventional
attention branchmethods [25], [26] which exploit the top con-
volution layer. Our approach is to exploit multiscale feature
maps from various layers in pyramid feature blocks of CNN.
We denote visual explanation aggregating valuable context
over multiple feature maps as global explanation. On the
other hand, local explanation represents visual explanation
about a single feature map. They contain not only semantic
information of objects but localization ability to detect the
small context (e.g. ship head, wings of an airplane) or objects
(e.g. car, boat). To extract elaborate global explanation from
feature maps with different spatial resolutions, we design
a cascading attention branch, subpath of pyramid feature
blocks to propagate the valuable context from the bottom

to the top convolution layer. In a cascading manner, local
explanation (i.e. local attention map) of the previous pyramid
feature block becomes a guide for extracting local explana-
tion of the following block while amplifying feature values
of the region where the previous one highlights. The global
explanation (i.e. global attention map) of the top block is
utilized for the refinement of the output feature map in the
feature pyramid network and visual explanation providing to
a supervisor.

2) WEAKLY SUPERVISED ATTENTION REFINEMENT IN
GROUND STATION
Next, we discuss an attention refinement method adapting the
supervisor’s knowledge only using a simple feedback mecha-
nism to improve visual explainability. In this step, the param-
eters of the onboard XAI model are refined by supervisors in
the ground station. In the classical approaches [32], [33] using
full supervision, supervisors corrects all (i, j) pixel values in
visual explanation, which is very time-consuming and highly
dependent on the supervisor’s ability. In our method, we split
two steps for refinement of the attention branch; choosing
the set of images showing the inconsistent explanation, and
weakly supervised attention refinement with selection-based
feedback in a feature pyramid network. The refined attention
branch containing the supervisor’s knowledge is uploaded to
the onboard system for more reliable prediction and expla-
nation. By updating policy according to this attention branch
iteratively, the proposed framework can achieve a sustainable
and reliable system for satellite image analysis.

In the following section, we describe an XAI model and
training strategies in the proposed system, in detail.
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FIGURE 7. Proposed CPANet for generating the global context to explain the satellite images. It consists of the perception branch and cascading attention
branch to transmit useful context from local explanations to global explanation via the bottom-up pathway. Detailed formulations are shown in
Section III-B.

B. CASCADING PYRAMID ATTENTION NETWORK FOR
ONBOARD IMAGES PROCESSING
In this section, we describe CPANet architecture for the
onboard processing of the captured images by the satellite,
as shown in Fig. 7. In advance, let D be a training dataset
with N pairs of (x, y), an image x∈RC×W×H (channel, width,
height) and its ground-truth label y ∈ {1, 2, · · · ,K }, where
K is the number of classes in D. The proposed CPANet 2=
{u, v} consists of the perception branch u, and the cascading
attention branch v. Building upon the CNN with the pyramid
feature blocks, we first denote a pyramid feature block as
a group of consecutive layers in which output feature maps
have the same spatial dimension of width and height. At the
end of each pyramid block, there is the spatial pooling (e.g.
average pooling) layer which compresses the spatial dimen-
sion for computational efficiency. In the pyramid feature
blocks, we consider L pyramid feature blocks from different
convolution layers. Given the input image x, we denote L
feature maps of the top convolution layer in each pyramid
feature block described in

A(2; x) =
{
Ai(2; x)

}L
i=1. (1)

Each feature map Ai(2; x) ∈ RC i×W i
×H i

has its own dimen-
sion. Because CPANet architecture is fixed in the following,
we simply use a term Ai(x) instead of Ai(2; x) for mathe-
matical simplicity, except in the theoretical analysis.

We present the cascading attention branch with subpath
from multiple pyramid feature blocks to extract the global
attention map over the multiscale feature maps {Ai(x)}Li=1.
To propagate the valuable contexts in a local feature map
to the following feature map, the previous attention map
becomes a guide when generating the following attention
map. As shown in Fig. 7, the feature map A1(x) is passed

into the following formula:

W = AvgPool(x̃)�
A1(x)−minA1(x)

maxA1(x)
, (2)

W′ = AvgPool(AttB1(W)), (3)

W 1
i (x) =

exp(W′i)∑C1

j=1 exp(W
′
j)
, ∀i={0, 1, · · · ,C1

−1}. (4)

In the first term of Eq. (2), the input image transformed to
grey-scale x̃ and down sampling matching width and height
toA1 via average pooling (AvgPool), which multiplies by the
normalized feature map of the bottom pyramid feature block.
We denote as � a element-wise multiplication. In Eq. (3),
the outputW is passing the local attention block and average
pooling to reduce the output to the C1-dimensional vector.
We design the local attention block with stacked convolu-
tional layers, and the input W in each convolution block is
forwarded as σ (BN (ω ∗W + β)), where σ is an activation
function of ReLU, BN is batch normalization, and (ω, β) is
a pair of weight and bias for convolution operation ∗. After
passing the local attention block, the output W′ ∈ RC1

of
Eq. (3) becomes confidence for channel importance of the
feature map A1. It means that the particular channel with
high value has the valuable context for explaining the objects.
To transform it to relative importance among theC1 channels,
the softmax function is passed in Eq. (4). The output vector
W 1(x)={W 1

i (x)}
C1

i=1 weighs the feature map A1(x) to gener-
ate the local attention map, as follows.

M(x) = σ
( C1∑
i=1

W 1
i (x)A

1
i (x)

)
,

M1(x) =
M(x)−minM(x)

maxM(x)
, (5)
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where we denoteA1
i (x) as the i-th channel in the feature map.

The local attention mapM1(x)∈RW 1
×H1

is a heatmap where
each value M1

ij ∈ [0, 1] is an (i, j) pixel importance for visual
explanation. Through the weighted sum of channels in the
feature map A1(x), the informative channels are emphasized
in the local attention mapM1(x).
Once the local attention map M i(x) is generated, our pur-

pose of the cascading attention is to enforce the following
feature map Ai+1 focusing on the region where the attention
map M i(x) is highlighting. To this end, we conduct the pre-
processing on the feature map Ai(x) guided by the previous
attention mapM i−1(x), which is obtained by

W =
(
1+M i−1(x)

)
�

Ai(x)−minAi(x)
maxAi(x)

,

∀i = {2, 3, · · · ,L}. (6)

And, the following calculation is same as Eq. (3) and Eq. (4).
After passing the L − 1 local attention blocks, the global
attention map ML(x) creates containing the global context
over the pyramid feature blocks. We regard it as global visual
explanation VE(x) (i.e. VE(x) = ML(x)). Moreover, the
global attention map ML(x) is applied to refine the feature
map AL(x) to improve the task performance. The refined
feature map ÃL(x) is derived as

ÃL(x)= (1+ML(x)) � AL(x). (7)

From Eq. (6), the regions where the global attention map
ML(x) are emphasized into the refined feature map AL(x),
whereas other regions are maintained. Finally, the refined
feature map passes to the predictor for correcting the object’s
class. The predictor outputs the c-class confidence pc(2; x)
of objects from the refined feature map. To train the model,
let the mini-batch of the training dataset be ζ = (X ,Y) with
image set X and corresponding labels Y , the loss term is
derived as

L
(
2; ζ

)
= −

1
|ζ |

∑
(x,y)∈ζ

K∑
j=1

1[y= j] log
(
pj(2; x)

)
, (8)

where (x, y) is a pair of image and label in mini-batch and the
indicator function 1[y= j] is 1 only if y= j. Based on Eq. (8),
we update the trainable parameters2t in t-th iterations using
gradient descent described in Eq. (9).

2t+1
= 2t

− ηO2tEζ∼D[L
(
2t
; ζ t

)
], (9)

where η is learning rate and ζ t is mini-batch in t-th training
iterations.

Now we provide a detail analysis for relationship between
local attention maps via the proposed CPANet. First,
we define the pyramid feature blocks and the local attention
blocks as follows:
Definition 1 (Relationship Between the Pyramid Feature

and Local Attention Block): In the perception branch u,
we denote the trainable parameters of the i-th pyramid feature
block and the local attention block as ui and vi, respectively.

In addition, the trainable parameters from i-th block to j-th
block is denoted as uji and v

j
i.

Training with the parameter update rule denoted in Eq. (9),
we suppose the following assumption:
Assumption 1: For training dataset D and parame-

ter update function Eq. (9) with proper hyperparame-
ter setting, we assume that the gradient of loss term
Eζ∼D[L

(
2t
; ζ
)
] is converged. And, let local attention

map with the cascading attention branch be M i(2; x) =
M i(ui, vi; ζ ). Then we assume that the local gradients∥∥∇uiM i(ui1, v

i
1; ζ )

∥∥, ∥∥∇viM i(ui, vi; ζ )
∥∥ ∀i = {1, 2, · · · ,L}

have upper-bound Z.
Note that the i-th local attention map is derived by corre-

sponding i-th pyramid feature block and local attention block
(i.e. the local attention map calculated from the path of the
pyramid feature block and local attention block, see Fig. 7).
From Assumption 1, we can construct the effectiveness of the
cascaded attention in the following Lemma 1.
Lemma 1: In the i, j-th the pyramid feature blocks with
∀i, j = {1, 2, · · · ,L}, i ≥ j, the gradients of attention maps
M i and M j are satisfied as∥∥∇2M i(2; ζ )−∇2M j(2; ζ )

∥∥ ≤ (2Z )j(1+ (2Z )i−j). (10)
Proof: From the Assumption 1 and from the gradient

chain rule, we can have∥∥∇2M i(2; ζ )−∇2M j(2; ζ )
∥∥

=
∥∥∇(ui1,vi1)M i(ui1, v

i
1; ζ )−∇(uji,v

j
1)
M j(uj1, v

j
1; ζ )

∥∥
≤
∥∥∇(ui1,vi1)M i(ui1, v

i
1; ζ )

∥∥+ ∥∥∇(uj1,vj1)M j(uj1, v
j
1; ζ )

∥∥
=
∥∥∇M i−1M i(ui1, v

i
1; ζ ) · ∇(ui−11 ,vi−11 )M

i−1(ui−11 , vi−11 ; ζ )
∥∥

+
∥∥∇M j−1M j(uj1, v

j
1; ζ ) · ∇(uj−11 ,vj−11 )

M j−1(uj−11 , vj−11 ; ζ )
∥∥

=
∥∥(∇uiM i(ui1, v

i
1; ζ )+∇viM

i(ui1, v
i
1; ζ )

)
· ∇(ui−11 ,vi−11 )M

i−1(ui−11 , vi−11 ; ζ )
∥∥

+
∥∥(∇ujM j(uj1, v

j
1; ζ )+∇vjM

j(uj1, v
j
1; ζ )

)
· ∇

(uj−11 ,vj−11 )
M j−1(uj−11 , vj−11 ; ζ )

∥∥
= 2Z ·

{∥∥∇(ui−11 ,vi−11 )M
i−1(ui−11 , vi−11 ; ζ )

∥∥
+
∥∥∇

(uj−11 ,vj−11 )
M j−1(uj−11 , vj−11 ; ζ )

∥∥}
≤ (2Z )j(1+ (2Z )i−j) = A. (11)

where the first inequality is obtained from
∥∥z1 − z2

∥∥ ≤∥∥z1∥∥+ ∥∥z2∥∥, ∀z1, z2 ∈ Rd ; the second inequality is obtained
from

∥∥z1z2∥∥ ≤ ∥∥z1∥∥∥∥z2∥∥, ∀z1, z2 ∈ Rd . Note that the partial
gradients of M1 is also bounded to Z because the perception
branch and attention branch is independent in the first block
(i.e.M1(u1, v1; ζ ) = Per(u1; ζ )+ Att(v1; ζ ), where Per and
Att are the function of the perception branch and attention
branch. �
We denote (2Z )j(1 + (2Z )i−j) to A that is used in the

Section III-D. From the Lemma 1, we can assert that the
object-related region from the previous attention map prop-
agates the next attention map. Through the L cascading
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attention blocks, visual explanation of the top convolution
layer can have the highlighted region in the previous attention
maps by compensating for the spatial information loss.

C. EXPLANATION INCONSISTENCY-BASED DATA
SAMPLING
CPANet deployed to the onboard system can provide
elaborate visual explanation catching the small context in a
satellite image while mitigating the background bias in a fea-
ture pyramid network. However, the problem of ambiguous
visual explanation may still occur due to the environmental
change and newly captured images out of the distribution of
the training dataset. Therefore, we consider the refinement
mechanisms of the proposed CPANet between the onboard
and ground station. In this section, we describe the active
learning-based data sampling for finding valuable samples
to improve visual explainability of CPANet. To this end,
it needs to resolve the problem of filtering the samples show-
ing ambiguous explanation automatically. As shown in Fig. 5,
visual explanations which inconsistent in different blocks
may indicate the information loss about the target object.
Inspired by this phenomenon, we introduce the criteria about
how inconsistent visual explanations are with respect to the
pyramid feature blocks.

In advance, we provide a method to compare the incon-
sistency of different visual explanations. It is measured by
comparing the similarity of two visual explanations. Previous
similarity metrics [36], [37] for visual maps is based on pixel-
wise comparison, given the image x. However, in the case
of visual explanation, this measurement include redundant
similarity of the region where the model is not focused on.
In this paper, we define a similarity metric of two visual
explanation in Definition 2.
Definition 2 (Similarity of Two Visual Explanations):

Given the input x the similarity of two visual explanations
generated by the cascading attention branch, VE1(x) and
VE2(x) is defined as ‘‘similarity of the spatial region where
the two explanations are commonly highlighting’’.

From Definition 2, we ignore the common area where the
both explanations are not focused on (i.e. blue area in Fig. 4).
To quantify the similarity, we describe a simple method as
follows: eliminating pixels (i.e. value to 0) with low values of
the region in visual explanation. To remain informative pixels
we use a threshold as 15% of the maximum value in visual
explanation similar with Grad-CAM [22]. We denote trans-
formed visual explanations as VE

1
(x),VE

2
(x), respectively.

Note that each pixel value in explanation has a range of [0, 1].
And then, the similarity SIM (VE1(x),VE2(x)) is derived as:

SIM (VE1(x),VE2(x))

=

∑
(i,j)∈S{1−

∣∣VE1
ij(x)− VE

2
ij(x)

∣∣}
area(S)

, (12)

where S is a non-zero pixels in explanations,

S =
{
(i, j)|VE

1
ij(x) 6=0 ∨ VE

2
ij(x) 6=0

}
. (13)

Note that area(S) is total number of pixels in S and VE
1
ij is

(i, j) pixel value. Based on the similarity in Eq. (12), we can
define the inconsistency of VE

1
(x) and VE

2
(x) as

U(VE1(x),VE2(x)) = 1− SIM (VE1(x),VE2(x)). (14)

From the inconsistency measurement in Eq. (14) the system
conducts the data sampling. Note that the proposed CPANet is
to pass the valuable local contexts to the top convolution layer.
Therefore, our data selection is based on the inconsistency
between the local attention maps {M i(x)}Li=1. Over training
datasetD= (x, y)Ni=1, we evaluate the inconsistency of VE

i(x)
and VE j(x) of the i-th and j-th local attention maps with
the trained model 2. Based on the maximum inconsistency
max(i,j) U(VE i(x),VE j(x)) we filter the sample x to be used
for attention refinement using threshold γ . We refer DU =

(x, y)N̂i=1 be the retraining dataset.

D. ATTENTION REFINEMENT USING WEAK SUPERVISION
IN GROUND STATION
In this section, we handle to improve the explanation fidelity
of the saliency map to supervisors by fine-tuning the cas-
cading attention branch. To retrain CPANet for consistent
explanation, we propose a novel weakly-supervised learn-
ing mechanism with selection-based simple feedback from
supervisors. In conventional fully-supervised approach [32],
a supervisor should manually create the ground-truth atten-
tion map. In our approach, we concentrate on inconsistent
local attention maps of ambiguous samples, which are fil-
tered the active learning. Using this characteristics of vari-
ous explainability over the pyramid feature blocks, we just
provide a selection among the local attention maps with high
interpretability. Based on the selected attention map as weak
supervision, CPANet is retrained with the attention regular-
ization loss term. Fig. 8 shows the overall procedure of the
proposed refinement method.

To provide useful explanations to the supervisor we con-
sider the training the self-attention weights with supervi-
sor intervention to visual explanations. From the retraining
dataset DU we define the supervisor’s feedback in the L
pyramid feature blocks, denoted as G, for feedback interface
to L local attention maps.
Definition 3 (Selection-Based Feedback): Supervisor

feedback G over L local attention maps is indicator for select-
ing the visual explanation with the human interpretability,
which is

G(2; xi ∼ DU ) : {M j(xi)}Lj=1→ R1×L , (15)

where each Gj(2; xi ∼ DU ) ∈ [0, 1] of j-th local attention
map has the following states ST = {‘‘wrong’’, ‘‘correct’’}.
We simply denote G(2; xi ∼ DU ) as Gj(xi). For ‘‘wrong’’
attention map, we add the penalty function. In the ground
station, there are several supervisors for analyzing satellite
images. We assume that each supervisor has own private
knowledge about analyzing the satellite images (e.g. domain,
class, etc.). In this situation, it is possible to mitigate the
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FIGURE 8. Update for onboard attention policy using weak supervision by selection-based annotation in pyramid feature blocks.

refined attention branch to be biased on a particular super-
visor by conducting the aggregated labeling of feedback
from multiple supervisors. Assume that there are T supervi-
sors with different domain knowledge in the ground station.
We denote Gjk (xi) ∈ R1×L the feedback (i.e. binary vector)
of j-th pyramid block of supervisor k according to the input
image xi. Through the majority voting to maximize consen-
sus among supervisors we derive the collective supervisor
feedback as

∑T
k=1 G

j
k (xi). If this value exceeds consensus

criteria δ, we set Gi(xi) to 1 (correct), else to 0 (wrong). In this
paper, we assume that there is only 1 supervisor for simplicity
(i.e.G = G). We set ‘‘correct’’ attention map as the weak
ground-truth for retraining.

When the image x and weak supervision {Gj(x)}Lj=1 are

given, we obtain a regularization term w.r.t the attention map
as Eq. (16).

1
Q

L∑
j=1

L∑
k=1

∥∥1[Gj(x)=0]M j(x)− 1[Gk (x)=1]M k (x)
∥∥2
2,

(16)

where Q are the number of the pyramid feature blocks with
‘‘wrong’’ labeling. From Eq. (16), the attention block and
connected pyramid feature block producing the wrong atten-
tion map can refine the weights guided by the supervisor’s

knowledge. The loss function can be derived from the regular-
ization term according to the explanation distance in a weakly
supervised attention map. As a result, the loss function Lref
for refining CPANet is derived as

Lref(DU ) = −
1

N̂

N̂∑
i=1

L(xi, yi)+ α
{ 1
Q

L∑
j=1

L∑
k=1∥∥1[Gj(x)=0]M j(x)− 1[Gk (x)=1]M k (x)
∥∥2
2

}
, (17)

where α is a control variable for refinement. The α value
means how the refined model reflects the supervisor’s knowl-
edge for explainability. The update function at t-th refinement
iterations is denoted as Eq. (18).

2t+1
= 2t

− ηO2tEζ∼DU [Lref
(
2t
; ζ t

)
]. (18)

After training all weights in the attention branch, the inconsis-
tency of L local attention maps can be reduced. Our approach
has a intuitive interface for supervisor intervention reducing
the annotation costs (correction of the attention map) of large
satellite images.

Now, we provide the theoretical analysis for explainability
boundary of the local attention maps.
Theorem 1 (Explainability Consistency for Attention

Maps): Let Lemma 1 be satisfied. We assume that there are
only single correct explanation MGT (2; x) among L local
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Algorithm 1 Procedure of Attention Refinement for Visual
Explainability in the Ground Station
Input: Trained CPANet 2, training dataset D, inconsistency
threshold of visual explanation γ , consensus criteria δ

1: DU ← {} F sampling data for refinement
2: for all x in D do
3: SIMmin← 1
4: Umax ← 0
5: for all i in {1, 2, · · · ,L} do
6: for all j in {1, 2, · · · ,L} do
7: VE i← M i(2; x) and VE j← M j(2; x)
8: VE

i
,VE

j
← remove non-informative pixels

9: S ←
{
(i, j)|VE

1
ij(x) 6=0 ∨ VE

2
ij(x) 6=0

}
10: AD← |VE

1
− VE

2
|

11: SIM (VE1,VE2)←
∑

(i,j)∈S 1−ADij
area(S)

12: if SIM (VE1,VE2) ≤ SIMmin then
13: SIMmin← 1− SIM (VE1,VE2)
14: end if
15: end for
16: end for
17: Umax ← 1− SIMmin
18: if Umax ≥ γ then
19: DU ← DU ∪ x
20: end if
21: end for
22: for all x in Dv do F attention refinement
23: Calculate {M j(x)}Lj=1
24: Gji (x)← RT ×L

∀i, j from T supervisors
25: if

∑T
k=1 G

j
k (xi) ≥ δ then

26: Gi(xi)← 1
27: else
28: Gi(xi)← 0
29: end if
30: end for
31: 2← Retraining CPANet by Eq. (17)
32: Update policy 2 to onboard

attention maps. From the initial trained model 2, under the
loss function Eq. (17), the difference of the output of the two
pyramid feature blocks MGT (x) and M j(x) is bounded as∥∥MGT (2t

; ζ t )−M j(2t
; ζ t )

∥∥
≤ At (1− 2αη)t

∥∥MGT (20
; ζ 0)−M j(20

; ζ 0)
∥∥, (19)

where 20 denotes the initial trained ones for 2 and ζ t is
mini-batch for t-iterations during refinement.

Proof: From the loss function and update rule given in
Eq. (17) and Eq. (18) and Lemma 1, we can obtain∥∥MGT (2t

; ζ t )−M j(2t
; ζ t )

∥∥
=
∥∥MGT (2t−1

; ζ t−1)− η∇2t−1Lref(2t−1
; ζ t−1)

−M j(2t−1
; ζ t−1)+ η∇2t−1Lref(2t−1

; ζ t−1)

− 2αη
{
MGT (2t−1

; ζ t−1)−M j(2t−1
; ζ t−1)

}

FIGURE 9. Onboard XAI-chip embedded system with CPANet prototype in
a AI processor connected to the COTS Xilinx FPGA. Especially,
we prototyped explainable AI processing unit (EPU) under Samsung
Foundry 28-nm CMOS Process with 200mW power consumption and
7.5W in the entire onboard system.

·
{
∇2t−1MGT (2t−1

; ζ t−1)−∇2t−1M j(2t−1
; ζ t−1)

}∥∥
=
∥∥MGT (2t−1

; ζ t−1)−M j(2t−1
; ζ t−1)

− 2αη
{
MGT (2t−1

; ζ t−1)−∇2t−1M j(2t−1
; ζ t−1)

}
·
{
∇2t−1MGT (2t−1

; ζ t−1)−∇2t−1M j(2t−1
; ζ t−1)

}∥∥
=
∥∥{MGT (2t−1

; ζ t−1)−M j(2t−1
; ζ t−1)

}
·
{
(1− 2αη){∇2t−1MGT (2t−1

; ζ t−1)

−∇2t−1M j(2t−1
; ζ t−1)}

}∥∥
≤
∥∥MGT (2t−1

; ζ t−1)−M j(2t−1
; ζ t−1)

∥∥
·
∥∥(1− 2αη){∇2t−1MGT (2t−1

; ζ t−1)

−∇2t−1M j(2t−1
; ζ t−1)}

∥∥
= A(1− 2αη)

∥∥MGT (2t−1
; ζ t−1)−M j(2t−1

; ζ t−1)
∥∥.
(20)

Therefore, we can prove that explanation consistency for the
pyramid feature blocks is bounded with Eq. (19). �
Theorem 1 shows that ‘‘wrong’’ visual explanation can

be corrected by Eq. (17). Overall procedure of the attention
refinement in the ground station is described in Algorithm 1.

E. ONBOARD XAI-CHIP EMBEDDED SYSTEM
IMPLEMENTATION
For explainability in the onboard XAI computing, CPANet
contains huge parameter space and computation
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requirements. Conventional onboard AI system [7] equipped
with the low-power HW (i.e. VPU) is not suitable for visual
explainability model deployed in satellite computing federa-
tion. That’s why we prototyped a newly designed explainable
AI processor, as shown in Fig. 9. In this section, we describe
our prototype of application specific integrated circuit (ASIC)
based the onboard XAI system for low-power and high com-
putation ability. We implement the proposed CPANet on a
low-power ASIC with COTS components and the embedded
system. In Fig. 9, it consists of programmable logic con-
troller, external/shared memory, convolutional/vector proces-
sor. In ASIC, the intrinsic resources are limited, therefore we
perform onboard processing adaptation for CPANet weights
and operators to utilize low-power ASIC. To accelerate XAI
methods, we design the explainable AI processing unit (EPU)
chip which is used in the onboard HW prototype.

1) PROGRAMMABLE LOGIC CONTROLLER FOR EPU
On low-power peripheral, the task partitioning control of
CPANet is necessary because the input data x and CPANet
information (ML ,2) that can be processed are limited.
Since the input data size may change, the partitioned task
Tk = (xk ,M i

k ,2k ) where input data {xk |x =
⋃

k xk},
2k = (uk , vk ) and CPANet graph operators with parameters
{(ML

k ,2k )|(ML ,2) =
⋃

k (M
L
k ,2k )}, is generated in the

Programmable Logic Controller. To guarantee each task can
be performed in the ASIC, the task size Mem(Tk ) should
satisfy Mem(Tk ) +Mem(ML

k (x)) ≤ S where shared memory
size has SMB,Mem(Tk ) equalsMem(xk )+Mem(2k ) because
operators do not occupy the storage, and Mem(ML

k ) is the
k-th partial output. Finally, the partial tasks to run are stored
in external memory. After processing a partitioned task of
CPANet, Programmable Logic Controller loads the results
from the shared memory in ASIC.

2) CONVOLUTIONAL/VECTOR PROCESSOR IN EPU
Entire operators to run CPANet are consisting of convolu-
tional and vector computations. In convolutional processor,
there are multiple array processing units. Array processing
units process the set of kernel sizes 1×1, 3×3, and 7×7 with
various zero-padding and stride sizes in parallel. Vector Pro-
cessor is designed to treat MaxPool, AvgPool, Batch Nor-
malization, ReLU activation, and GEMM. From the vector
processor, the partial outputML

k (xk ) is stored to shared mem-
ory. The power consumption of our onboard processing is
commonly 7.25 W . The designed EPU shows that the power
consumption is about 200mW in die area 10.24mm2.

IV. EXPERIMENTS AND DISCUSSION
In this section, we show the performance comparison of the
proposed methods with other approaches and discuss the
results.

A. EXPERIMENT SETTING AND BASELINE METHODS
We conducted experiments on UC Merced land use
(UCMerced) [35] and NWPU-RESISC45 [38] dataset.

UCMerced dataset contains 21,000 images with 256 ×
256 resolution with 21 land use classes. 90% of total images
is randomly split into training, and the other 10% is used for
validation. NWPU-RESISC45 contains 31,500 images with
256 × 256 including 45 classes with from 0.2 to 30m pixel
resolution. There are 700 images per class, captured from
Google Earth. We compare our methods with other attention
branch methods using only top-level feature map such as
ABN [25] and LFI-CAM [26]. In addition, we compared
the visual explainability with class activation methods such
as CAM [20], Grad-CAM [22], Grad-CAM++ [23], and
LayerCAM [24] with the proposed CPANet. Note that these
post-hoc explanation methods cannot influence task perfor-
mance and require additional backpropagation operations
except CAM. Note that our training CPANet and refinement
are conducted on a server platform with NVIDIA GPUs,
these stages are irrelevant to the onboard HW that is only for
inference after training. We use 4 NVIDIA RTX 3080 GPUs
for training and we use python 3.6.13, CUDA 11.3, and
pytorch 10.2 as DL framework.

B. MODEL ARCHITECTURE AND EVALUATION METRICS
We use ResNet-18 [34] architecture as a common perception
branch in the baselines and the proposed CPANet. In ResNet,
we set each residual block as each pyramid feature block (i.e.
L = 4). The image augmentation and optimizer settings are
similar to ABN [25] and LFI-CAM [26]. Training images
in datasets are cropped with a random ratio and resized to
224× 224 and randomly adapted to horizontal flips. We use
stochastic gradient descent (SGD) with momentum as the
optimizer for all models. The initial learning rate is set to 0.1
with momentum to 0.9. In our experiments, the total training
epochs is 200, and the learning rate decaying to 0.1 and
0.01 in 100 and 150 epochs, respectively. We use a weight
decaying set to 1e-4 for all cases.

Basically, we adapt the top-1 error (%) and the number of
trainable parameters as the metrics for comparing the task
performance. In addition to that, we evaluate the qualitative
analysis of visual explainability on the proposed model and
baselines. As a metric for evaluating explainability, we mea-
sure maximum sensitivity about input perturbation. In [39],
maximum sensitivity of the explanation is defined as the
maximum norm of differences of the explanation VE for a
black-box model f in the input x and r-perturbation input y,
which is defined as

Smax(VE,2, x, y) = max
‖y−x‖≤r

‖VE(2; y)− VE(2; x)‖. (21)

In every experiments, we use Gaussian noise with (−r,+r)
for total 100 perturbated inputs y, and measure the maxi-
mum difference by Eq. (21). In satellite images, there are
many environmental variances such as sunlight, noise, etc.,
resulting in the change in prediction and visual explanation.
Therefore, this maximum sensitivity can be an indicator of
how the XAI model can be robust in satellite image analysis.
For validating ambiguous explanation, we use inconsistency
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TABLE 1. Performance comparison of visual explanation methods on UCMerced and NWPU-RESISC45: The proposed CPANet vs. baseline CNN with
CAM [20] and post-hoc explanation methods, and attention branch methods (ABN [25] and LFI-CAM [26]).

FIGURE 10. Comparison of visual explanation results on UCMerced images with the proposed CPANet and baselines.

of visual explanation between the pyramid feature blocks,
described in Eq. (14). Note that inconsistency measures how
much the trained XAI method focuses on the exclusive region
compared to the common region between the feature maps
over pyramid feature blocks. As discussed in Section II-D,
it seems that the phenomenon of background bias results
in a rapid change in the region where the pyramid feature
block is focused, especially in the satellite images including
lots of small objects. The inconsistency metric can be used
to measure the changing in visual explanation. In addition,
we also evaluate the explainability metrics of average %
drop and % of increase in confidence, widely used in XAI

methods [23], [40], [41]. The both metrics is based on the
comparison of original image x with ground-truth label c
and explanation map xexp = x � VE(2; x). The explana-
tion map is the synthetic image with highlighting regions
where visual explanation focuses and the other regions are
removed (remind that each pixel of visual explanation has
[0,1] floating-point value). Average % drop (denote as ‘‘aver-
age drop’’) represents average drop ratio of c-confidence
pc(2; x) (see Eq. (8)) over validation dataset when the expla-
nation map is fed into an XAI model. It means that if visual
explanation misses the contexts representing the objects or
highlights the uncorrelated region the average drop could
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FIGURE 11. Comparison of visual explanation results on NWPU-RESISC45 images with the proposed CPANet and baselines.

be high. On the other hand, increase % in confidence is
the ratio of the number of validation images with increasing
c-class confidence pc(2; x) when feeding the explanation
map. It means that the explanation map strongly highlights
the most discriminative region of the objects. Similar to [23],
we remove 50% of lower pixels of visual explanation when
generating the explanation map.

C. EVALUATION ON SATELLITE IMAGE DATASET
Table 1 shows the results of top-1 accuracy and explainability
on UCMerced and NWPU-RESISC45 datasets. Comparing
with conventional ResNet without any attention (see Base),
the proposed model can achieve 2.86% and 1.22% lower
top-1 error in UCMerced and NWPU-RESISC45, respec-
tively. Compared to the existing attention branches the pro-
posed CPANet reduces the top-1 error up to 2.4% and in
UCMerced. Likewise, in NWPU-RESISC45 dataset, the
proposed CPANet shows better task performance compared
to conventional methods while achieving about 1% lower
top-1 error. In terms of trainable parameters, all attention
branch methods have a large number of parameters due
to the sub-path built on the pyramid feature blocks (i.e.
ResNet backbone). Asmentioned above, ABN and LFI-CAM
consider only generating a visual attention map from the
top-level convolution layer. In the proposed model, however,

TABLE 2. The evaluation of quantitative explainability in terms of
average drop (‘‘Avg. Drop’’) and increase in confidence (‘‘Inc. in Conf.’’)
introduced in [23] in the proposed CPANet and baselines of attention
branch methods (ABN, LFI-CAM). We used the UCMeerced dataset in this
experiment.

we provide visual explanation based on 4 pyramid feature
blocks (i.e. last layer of each residual block) for better
explainability. Although the attention branch of the pro-
posed model covers more feature maps comparing to ABN
and LFI-CAM, it only requires ≤1% additional parame-
ters, which shows the structural efficiency of our method.
In terms of explainability measurement, CPANet is quietly
worse in UCMerced dataset and better in NWPU-RESISC45
dataset. Although ABN shows the higher maximum sensi-
tivity, we confirmed that attention was highly concentrated
in the peripheral regions, even in the background. In addi-
tion, we show the enhancement of the maximum sensitivity
through the attention refinement in the following section.

The qualitative results of the visual explanation of
UCMerced dataset are depicted in Fig. 10. Note that we
extract Grad-CAM results from the top convolution layer,
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as mentioned in [22]. In terms of small objects (see ‘‘har-
bor’’ images), visual explanations derived from the conven-
tional methods (CAM, ABN, LFI-CAM) that only considers
the top-level convolution layer cannot accurately capture
the object (ship), where the trained model rather focus on
the background context (ocean) when predicting the category.
Especially, ABN severely fails to capture the objects while
only highlighting the background. Even in the multiple layers
fusion-based explanation method (LayerCAM), the model
cannot filter the background context because it just aggre-
gates visual explanation with pixel-wise maximization from
the multiple layers. This aggregation method may include
unnecessary information about feature maps in visual expla-
nation. However, the proposed method can efficiently remove
these redundant feature maps biased on the background by
weighting the different importance on each layer to generate
visual explanation. Especially, in the results of ‘‘parkinglot’’
(fourth column), the proposed CPANet completely excludes
the background, and it achieves high-quality visual expla-
nation comparing to the other methods which highlight the
background and miss some objects. Moreover, such back-
ground bias is also mitigated on the larger constructions such
as freeway (third column) and buildings (fifth column) by
allocating small weights on the background biased feature
map with our cascading attention method. Likewise, in the
‘‘airplane’’ images (last two columns), the critical back-
ground bias occurs in the other comparing methods focusing
on the airstrip together. In summary, in terms of capturing
the exact boundary of the object, the proposed model shows
better quality than the top-layer explanation methods (CAM,
ABN, LFI-CAM). The spatial information loss in the pyra-
mid feature blocks carries unclear object location in visual
explanation, resulting in the background focusing. And, the
method of multiscale feature maps (LayerCAM) cannot dis-
tinguish explainability of local explanations by highlighting
both object and background. On the other hand, CPANet
can distinguish between objects and backgrounds accurately
in complex images. Fig. 11 also shows visual explanations
about the NWPU-RESISC45 dataset. In the results, CPANet
can also identify the target objects from the background and
redundant objects (see the first column), while the other
methods raised the background bias in the results. In the case
of multiple object in a single image (see from first to third
th column), CPANet concentrates on all objects as fairly as
possible while separating the background and unnecessary
context (e.g. ‘‘car’’ in first column). By mitigating such back-
ground bias on visual explanation efficiently, our method can
provide the higher explainability.

Table 2 demonstrates explainability of average drop and
increase in confidence metrics for various attention branch
methods in the UCMerced dataset. Note that the higher
average drop and lower increase in confidence mean better
explainability. ABN shows low performance compared with
other methods. CPANet achieves >11.18% better average
drop, which implies that the proposed CPANet generates
visual explanation covering the entire objects with the small

FIGURE 12. Comparison of visual explanation results in the feature
pyramid blocks on a UCMerced image. The proposed CPANet can
propagate the useful context in the low layer (boundary of ‘‘airplane’’) in
a cascading manner.

context while ABN and LFI-CAM can miss the discrimina-
tive parts of the objects and highlight the unnecessary region
disturbing the model prediction. In contrast, increase in con-
fidence of CPANet is worse than LFI-CAM (about 2.86%).
It implies that the number of explanations highlighting the
most discriminative region is large in LFI-CAM. Summa-
rizing the results, LFI-CAM can highlight the most distinc-
tive parts of the objects, but it can also miss small contexts
and highlight unnecessary backgrounds. On the other hand,
we can argue that the proposed CPANet can stably capture
the overall contexts of the objects while showing better task
accuracy and maximum sensitivity than that of LFI-CAM.

D. ABLATION STUDIES OF THE PROPOSED CPANet
In this section, we provide a detailed analysis of the advan-
tages of the proposed CPANet. For the ablation studies,
we verify visual explanation of the intermediate pyramid
feature blocks. Wemeasure the inconsistency of visual expla-
nations of the different blocks. We compare the results with
Grad-CAM which can extract visual explanation in the inter-
mediate feature maps.We get the inconsistency w.r.t all possi-
ble combination cases of the pyramid feature blocks. For the
validation dataset in UCMerced, the mean and variance of
the proposed CPANet are 0.212 and 0.004 while Grad-cam
shows 0.31 and 0.019, respectively. It seems that the result
is due to the feature map guided by the previous attention
map described in Eq. (6). Through the cascading attention
blocks, the spatial information loss of the higher convolu-
tion layer can be compensated, resulting in the relaxation of
the background bias. Fig. 12 illustrate visual explanation in
CPANet and Grad-CAM. We can observe that the proposed
model can propagate the boundary of the airplane in pyramid
feature block 1 to the following blocks while Grad-CAMonly
focuses on the regions of the local pyramid feature block.

Table 3 demonstrates explainability results of the average
drop and increase in confidence. In terms of increase in con-
fidence, CPANet shows higher visual explainabiltiy over all
the pyramid feature blocks which implies visual explanation
can capture the most discriminative region compared with
Grad-CAM. In the average drop, however, Grad-CAM seems
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TABLE 3. The evaluation of average drop and increase in confidence of
visual explanation for Grad-CAM and CPANet over the pyramid feature
blocks (Block) in ResNet-18. We also use the UCMerced dataset in this
experiment.

to be slightly high performance (i.e. lower average drop)
in Block 4 and Block 3. We discuss the two perspectives
from this result. First, Grad-CAM shows inconsistency of
explanations in the pyramid feature blocks. Explanation in
block 1 shows NaN value because the model fails to predict
c-class probability in the explanation map (values to NaN).
They show unstable explainability among the pyramid fea-
ture blocks. Second, in terms of the average drop, it can
be able to argue that the proposed explanation mechanism
is slightly worse than Grad-CAM (about 0.31% in Block4).
Grad-CAM is the class activation map method which means
that visual explanation is only about the specific class via the
gradient of c-class confidence. Whereas, that of the attention
branch methods (CPANet, ABN, LFI-CAM) is about the
salient objects independent of the target classes. Therefore,
if visual explanation of CPANet only highlights the object
unrelated to the ground-truth class c, then c-class confidence
of the explanation map may be near 0 because all regions
about the target objects are removed. In Grad-CAM, however,
even if the model predicts the different target class, visual
explanation of c-class may contains the tiny regions about
the target class because it is generated by only the gradient
of c-class confidence. In this reason, the class activation map
based Grad-CAM outperforms ABN and LFI-CAM in terms
of the average drop (see Table 2).

E. EVALUATION OF ATTENTION REFINEMENT WITH WEAK
SUPERVISION
In this section, we evaluate the attention refinement scheme
containing the active learning-based sampling with inconsis-
tent explanation and weak supervision in the ground station.
From the ResNet model initially trained with the UCMerced
training dataset, we measure the maximum inconsistency
among the local attention maps (i.e. visual explanation of the
local pyramid feature block), then sample the images with a
higher value than the threshold. In this experiment, we set the
threshold γ to 0.3 and weighting α to 1.0. Through the data
sampling method based on the explanation inconsistency,
we sample almost 700 images among total 2, 100 training
samples. An example of sampled data is illustrated in Fig. 13.
We can notice that the background bias occurs in the pyra-
mid feature block 4. It results in inconsistent explanation of
the pyramid feature blocks. In this case, the supervisor can
resolve the background bias by setting the weak supervision

FIGURE 13. Example of the sample (ground-truth label is ‘‘river’’) with
inconsistent explanation of pyramid feature blocks. Supervisor can select
proper visual explanation (block 2) as weak supervision.

TABLE 4. The evaluation of attention refinement based on weakly
supervision for the validation dataset: Init. Train is the trained CPANet
with training dataset and Att. Ref is retrained CPANet with supervisor’s
feedback for the images with inconsistent explanation. Note that value of
inconsistency represents mean(variance).

(i.e. select block2 as weak ground-truth) and retraining it with
loss function Eq. (17).

As the hyperparameter of the refinement, we set the learn-
ing rate to 0.01 and weight decay to 1e-4 same as the initial
training stage. The results is presented in Table 4. The results
show that the top-1 error is the same after the attention
refinement. It means that the DL model corrects the target
class of the sampled data, which the cross-entropy loss Eq. (8)
is already saturated before the refinement. However, from the
perspective of explainability, the proposed attention refine-
ment reduces the inconsistency U and maximum sensitivity
Smax . The results show that the refinement scheme with sim-
ple supervisor feedback can make CPANet generate robust
explanations on the onboard.

F. COMPARISON OF COMPUTATIONAL COST FOR THE
PROPOSED FEDERATED COMPUTING WITH EPU
EMBEDDED SYSTEM
In this section, we discuss the computational costs of the
proposed FOGS computing compared to the conventional
approach (i.e. all captured images are transmitted via satellite
downlink and processed on the ground station computing).
In the proposed method, the interesting objects are selectively
transmitted to the ground station, and the area occupied by
an object may be minor in the entire satellite image. Due to
the limitation of the satellite electrical power system (EPS),
we define the computational cost metric C as the expected
energy consumption for processing all captured images D
from a satellite. We denote |D| and data(D) is the number of
image patches and data volume (GB) to be transmittedD. The
computation cost CGS of the conventional approach, ground
station (GS) only, is given to Eq. (22),

CGS = Pcomm ·
data(D)
Rcomm

+ PGS ·
(
|D| · tGS

)
. (22)

PGS is the active power consumption of groun stationHW, tGS
is the processing time per an image, Pcomm and Rcomm are the
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TABLE 5. Comparison of computational costs of the conventional
approach (ground station only) CGS and federated onboard-ground
station (FOGS) computing CFOGS with various onboard HW based on
Eqs. 22 and 23.

transmission power and transmission rate from the satellite to
the ground station, respectively. Similarly, the computational
cost CFOGS of FOGS is given to Eq. (23),

CFOGS = POBD ·
(
|D| · tOBD

)
+ Pcomm ·

data(ρ ·D)
Rcomm

. (23)

POBD and tOBD are the active computation power and pro-
cessing time of onboard (OBD) HW, and ρ is the ratio of
the selected image patches (i.e. interesting targets from the
ground station).

Then, we evaluate the computational cost in the case of pro-
cessing |D| = 100, 000 captured image patches (each image
has 224× 224 spatial dimension). Following the SANSA
parameters referred from [42], we set Pcomm = 1W and
Rcomm=200Mbps.We assume that the processing time calcu-
lates the total number of operations divided by the maximum
TOPS (Trillion Operation per Second) of the HW accelerator
for the simulation. And, we use the image compression ratio
for captured image patches followed by consultative commit-
tee for space data systems (CCSDS) 123.0-B-2 standard [43]
(in the case of the lossless compression). Table 5 shows the
result of computational costs of energy consumption (Kilo
Joule; KJ) in various settings. From the result, it seems to
be that the filtering patches in FOGS computing are effective
in terms of the computational cost C , providing a lower
energy consumption for processing the given images. Xilinx
XCZU7EV based onboard system, the COTS HW evaluating
the onboard CloudScout model by [44], shows the higher cost
(> 9.9×) than the EPU embedded system (in Section III-E)
due to its low power consumption. In the low-power HW
setting, the effect of the proposed onboard-ground station
computing is more pronounced. The result implies that the
low-power engineering of the onboard HW is mandatory for
processing for the onboard XAI computing.

V. CONCLUSION
In this paper, we proposed a federated onboard-ground sta-
tion computing framework for satellite image analysis. For
reliable analysis in complex space-related applications, espe-
cially in object recognition, we introduce a novel XAImethod
with CPANet in the onboard processing. By utilizing rich
information for explainability in the multiple pyramid feature
blocks, the proposed model improves not only visual explain-
ability in terms of robustness in data perturbation but the task

performance. In addition, we propose the onboard refinement
scheme with the supervisor’s feedback. Using weak supervi-
sion, the proposed refinement mechanism can reduce the cost
of supervisor annotation, and improve visual explainability.
In future work, we are going to extend the architecture to
the object detection task and develop the prototype system
with a low-power AI accelerator. Due to the limited elec-
trical power system (EPS) in the satellite, an onboard AI
model should be light-weight. Though the proposed CPANet
can improve accuracy and visual explainability effectively,
it requires additional computation. Therefore, we additionally
consider co-design of the network compression (pruning and
weight quantization) for the implementation. Then, we will
validate the feasibility of our onboard system in terms of
processing time and power consumption.
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