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ABSTRACT Due to the black-box nature of deep networks, making explanations of their decision-making
is extremely challenging. A solution is using post-hoc attention mechanisms with the deep network to verify
the decision basis. However, those methods have problems such as gradient noise and false confidence.
In addition, existing saliency methods either have limited performance by using only the last convolution
layer or suffer from large computational overhead. In this work, we propose the Collection-CAM, which
generates an attention map with low computational overhead while utilizing multi-level feature maps. First,
the Collection-CAM searches for the most appropriate form of the partition through bottom-up clustering
and clustering validation process. Then the Collection-CAM applies different pre-processing procedures on
the shallow feature map and final feature map to overcome the false positiveness when applied without
distinction. By combining collection-wise masks according to their contribution to the confidence score,
the Collection-CAM completes the attention map generation process. Experimental results on ImageNet1k,
UC Merced, and CUB dataset and various deep network models demonstrate that the Collection-CAM not
only can synthesize a saliency map with a better visual explanation but also requires significantly lower
computational overhead compared to those of region-based saliency methods.

INDEX TERMS Visual explanation, deep learning, acceleration, clustering analysis.

I. INTRODUCTION
Deep Neural Networks(DNNs) exhibit superior performance
and reproducibility compared to other machine learning algo-
rithms. DNNs have outperformed professional human players
in complex strategic games such as Go [1] and showed supe-
rior performance in complex tasks such as object recognition
[2] and natural language interpretation [3]. Although DNNs
show impressive performance in several applications, their
nested nonlinear structure of them makes the model opaque,
making it unclear which information in the input data serves
as the basis for the decision-making. In other words, it is not
possible to know in detail which part of the image the basis
for DNN’s judgment lies, which makes DNNs often referred
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to as ‘‘Black Box’’. This opacity is a clear drawback in that
it is difficult to understand and validate the decision process
of DNNs in many applications. However, in areas such as
medical diagnosis, for the safe utilization of DNNs, the basis
for judgment must be provided for experts’ interpretation
and verification [4]. Also, the interpretable deep model is
useful for analyzing its vulnerabilities or selecting models or
architecture with similar performance [5]. Accordingly, DNN
explainability and human interpretability are prerequisites for
ensuring that a DNN is performing correctly while being also
essential for improving the functionality of DNNs.

Explanation methods for DNNs can be classified into
three main categories: visualization methods, model dis-
tillation, and intrinsic methods [6]. Visualization methods
illustrate an explanation by highlighting the input’s specific
part that strongly affects the output of the DNN. A separate
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‘‘White-Box’’ machine learning model is developed in model
distillation to pinpoint which features of the input affect
the DNN output and the decision rule of the DNN. DNNs
with intrinsic methods generate predictions with explana-
tions. In the learning process of DNNswith intrinsic methods,
model performance and quality of explanations are optimized
jointly. In this work, we discuss the post-hoc attention mech-
anisms which are classified as visualization methods.

Given a learned DNN and an input image, post-hoc atten-
tion mechanisms visualize an intuitive heatmap that shows
humans the most relevant part of the DNN’s decision-
making. Post-hoc attention mechanisms can be divided into
activation-based saliency map1 generation methods [8], [9],
[10], [11] and region-based saliency map generation methods
[12], [13], [14]. In the case of feature map-based saliency
methods, the required computation is very low because it
needs one or several times of DNN forward propagation.
However, gradient noise leads to an incorrect association
between each feature map and target category. Consequently,
it generates a saliency map that includes much meaning-
less information. On the other hand, region-based saliency
methods measure the individual mask’s contribution to the
prediction of the target category and synthesize an attention
map with improved explainability based on the measured
contribution. However, their computational overhead is much
larger than that of featuremap-based saliencymethods as they
require a large execution time due to the amount of computa-
tion which is proportional to the number of masks(> 103).

Existing post-hoc attention mechanisms generally utilize
DNN’s feature maps from the final convolutional layer to
generate a saliency map. As the saliency map is a combina-
tion of feature maps, the low spatial resolution of the final
feature map limits the quality of the resulting attention map.
To compensate for this shortcoming, a natural way to make
the attention map include more fine-grained information is
to utilize shallow feature maps with higher spatial resolu-
tion together. Nonetheless, when feature maps are used for
attention map synthesis without considering the individual
layer’s level, it could generate a saliency map with degraded
explainability which emphasizes the background more than
the object. In Figure 1, we can see that the resulting saliency
map with shallow feature maps attends to the background
more than it does to the object.

In this work, we present Collection-CAM which reduces
the computational overhead of existing region-based saliency
methods and generates a more fine-grained attention map by
use of shallow feature maps. First, via sequential bottom-
up search, we obtain partitions for each feature map level,
which groups similar feature maps into a collection. Then,

1In this work, we use a saliency map, an attention map, and visual expla-
nation as the interchangeable term. In salient object detection [7], a saliency
map also refers to a means to find the most salient and attention-grabbing
object from the input image, which segments the foreground object from the
background. However, we limit the use of saliency map, attention map, and a
visual explanation to the visualization of the input image region that played
a critical role in predicting as Fc for a classification deep model F .

we identify the partition with the maximum dispersion-
separation ratio formultiple featuremap levels via the cluster-
ing validation process. Furthermore, we utilize the pixel-wise
gradient of the featuremap to generate a collection-wisemask
for shallow feature maps. It suppresses the activation from the
background while strengthening the fine-grained details of
the object. Finally, we get an attention map by combining the
collection-wisemasks according to themeasured importance.
Our contributions are summarized as follows.

• We introduce a hybrid visual explanation method,
Collection-CAM, which leverages the principles of
both gradient-based and region-based saliency meth-
ods. It generates a saliency map using masks from
multiple-level feature maps in an intuitively understand-
able way.

• We evaluate generated saliency maps by Collection-
CAM quantitatively and qualitatively through extensive
experiments. We measure the running time of various
saliency methods and verify that it requires significantly
less time than other region-based saliency methods. For
faithfulness evaluation, using Average Drop / Average
Increase and Deletion / Insertion metrics, we demon-
strate that Collection-CAM is superior to comparative
saliency methods at spotting important parts of the input
image. In addition, using the proportion metric, we show
that the localization ability of Collection-CAM is prefer-
able to comparative methods.

• We describe the effectiveness of Collection-CAM in
other applications. We verify that Collection-CAM can
be used as a debugging tool by providing results on san-
ity checks. In addition, we show that the proposed frame-
work can be used for generating high-quality object pro-
posals for the weakly supervised object detection task.

The remainder of this work is organized as follows.
Section 2 reviews existing post-hoc attentionmechanisms and
issues for them. Section 3 presents the design of the proposed
Collection-CAM. In section 4, we validate Collection-CAM
via conducting quantitative and qualitative performance com-
parisons with state-of-the-art methods. Finally, section 5 con-
cludes our work.

II. PROBLEM DESCRIPTION IN RELATED WORKS
We break down saliency methods into three categories:
gradient-based methods, activation-based methods, and
region-based methods. First, we provide an overview of dif-
ferent types of saliency methods. Also, we discuss the prob-
lems that arise when we want to improve visual explanation
by the use of multi-level feature maps.

A. EXISTING SALIENCY MAP GENERATION METHODS
Gradient-based saliency methods obtain attributions by
applying backpropagation of the output to each layer of the
network. Then they produce a saliency map by returning
the obtained features to the input. Guided Backpropagation
[15] attempted to enhance the quality of the saliency map

VOLUME 10, 2022 112777



Y. Ha, C.-H. Youn: Collection-CAM: A Faster Region-Based Saliency Method

FIGURE 1. Comparison of attention maps for bighorn category image
when Grad-CAM applied to ResNet101 classifier; (a) Input image
(b) ‘layer4’ (c) [‘layer1’, ‘layer2’, ‘layer3’, ‘layer4’].

by using the ReLU unit to set negative values as zero. Inte-
grated Gradients [16] tried to solve the gradient saturation
issue prevalent in gradient-based methods by estimating and
utilizing the global importance of each pixel. Excitation
Backpropagation [17] utilized a probability model called the
probabilistic winner-take-all process to back-project higher-
level attribution to lower-level. When calculating gradients,
Smoothgrad [18] attempted to alleviate the ‘visual diffusion’
of ‘b’ generated by adding noise to the input. Gradient-based
saliency methods tend to produce low-quality non-smooth
visual explanations with visual noise, as it operates on a pixel-
by-pixel basis.

Activation-based saliency methods generate an attention
map through a linear combination of weighted feature maps.
Typically, these methods utilize output feature maps and cor-
responding gradients of the final convolutional layer to syn-
thesize the visual explanation. The main difference between
these methods lies in how to produce weights. CAM [8]
involves structural modification of target CNN architecture
that substitutes the fully connected layer with the global
average pooling. As a result, it can obtain attention map
and prediction through single forward propagation. How-
ever, structural modification accompanies the retraining of
the deep network. Grad-CAM [9] overcomes this limitation.
Grad-CAM multiplies individual feature map and weight
obtained by global average pooling for gradient for the target
class confidence scoreFc(I ). Through the linear combination
of them, Grad-CAM generates a visual explanation for the
given input image. Similarly to Grad-CAM, Grad-CAM++
[10] and Layer-CAM [11] utilize individual feature maps
and gradients for attention map generation. The difference
between those methods lies in how to set the importance
weight of each feature map. Grad-CAM++ uses the posi-
tive partial derivative of the target class for weight gener-
ation. Layer-CAM multiplies each feature map’s pixel and
the corresponding weight generated from the corresponding
gradient value for each pixel. They are much faster than
region-based saliency methods, as they require only one or
several times of forward propagation to obtain the attention
map. However, the weak point of those methods is that the
gradient itself is not sufficient to measure the importance of
each feature map. Noiseness [19] and false confidence [13]
are typical examples of the low quality of activation-based
saliency methods. False confidence means that the impor-
tance weight of the feature map is not proportional to the

contribution to the confidence score of the target class. Noisy
gradient refers to visual noise induced by gradient explosion
and vanish, caused by flat-zero gradient region in activation
function such as ReLU and Sigmoid common in many Deep
Networks. Furthermore, as the gradient is calculated with
weights from connected neighborhood layers, it ignores the
relationship between adjacent pixels. As a result, it causes
discontinuity between adjacent pixels.

Region-based saliency methods such as RISE [12], Score-
CAM [13] and XRAI [14] preserve certain areas of the input
image by introducing a mask to measure the importance
of each area by propagating the masked input image. With
the masks and measured corresponding importance weights,
they synthesize an attention map. RISE randomly gener-
ates thousands of masks to probe the target deep network
with the masked input image. XRAI uses over-segmented
image acquired through Felzenswalb’s algorithm [20] and
pixel-level attribution generated through Integrated Gradients
[16] to identify the most important part of the model predic-
tion. Score-CAM measures the importance of individual fea-
ture maps through forward propagation of the masked image
according to the intensity of each feature map. Specifically,
it defines the importance of an individual feature map for
the confidence score of the target class as a Channel-wise
Increase of Confidence in Equation 1.

CIC(Ak ) = Fc(I � H k )− Fc(Xb) (1)

where

H k
= s(Up(Ak )) (2)

� operation in Equation 1 denotes element-wise multiplica-
tion. Up(·) in Equation 2 denotes upsampling function for
featuremapAk to enlarge it as the same size of the input image
I . s(·) normalizes its input into [0, 1] range. Based on those
Equations, Score-CAM generates a saliency map:

LcScore−CAM = ReLU (
∑
k

αckA
k ) (3)

where importance weight αck for feature map Ak is substituted
with CIC(Ak ). Region-based saliency methods synthesize
an attention map using mechanisms similar to the Score-
CAM, resulting in a better quality attention map compared
to the map generated by activation-based saliency methods.
However, at the same time, this mechanism results in a much
longer execution time as shown in Table 1, due to the large
computation overhead proportional to the number of feature
maps or generated masks.

B. GENERATING VISUAL EXPLANATION USING SHALLOW
FEATURE MAPS
Saliency methods using feature maps usually use feature
maps derived from final convolutional layers. It is because
the final feature maps are located closest to the prediction
and contain the most semantic information with minimum
size. To describe how feature maps evolve along the forward
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TABLE 1. Preliminary evaluation for faithfulness and running time of
different visual explanation generation methods. ResNet-101 and
ImageNet1k validation were used as the deep model and the dataset,
respectively. A lower average drop(AD) and higher average increase(AI)
suggest better faithfulness.

propagation, we give an example. We denote oth penultimate
feature map as Bo, kth final feature map generated by apply-
ing the activation function f and kth convolution filters to
Bo as Ak . We describe the relationship between final feature
maps and penultimate feature maps in Equation 4.∑

i

∑
j

Aki,j =
∑
m

∑
n

W k
m,n

∑
o

f (Bom,n) (4)

where W k
m,n denotes kth convolutional filter’s weight for

location (m, n). With Equation 4, we verify that the total
intensity of the activated area is preserved between adjacent
feature maps. However, we see that m ≥ i and n ≥ j, which
suggests that activated regions are concentrated on a smaller
number of pixels due tomany convolution filters and poolings
along the forward propagation path. Furthermore, activation
functions f such as ReLU, Sigmoid, and tanh are non-linear
functions that remove fine-grained detail in shallow feature
maps and refine final feature maps to contain semantics of
the input image. Therefore, final feature maps usually don’t
show fine-grained details for the target class.

A natural approach that can be utilized to compensate for
the weak point of final feature maps is to expand the range of
considered feature maps including shallow feature maps that
capture fine-grained detail. However, a naive approach that
simply expands the target range of feature maps without con-
sidering the difference between them causes a worse visual
explanation, as shown in Figure 1. This is because shallow
feature maps contain fine-grained details for both the target
object and background, which results in background noise.
To examine the degradation of visual explanation in more
detail, we measured the localization performance according
to the considered feature map range cases. We used 500 sam-
ples from ImageNet1k and ResNet-101 model. In Figure 2
that illustrates the localization performance, we can observe
that the localization performance becomes worse as it consid-
ers a wider range of feature maps.

III. PROPOSED COLLECTION-CAM
In this section, we provide the details for the proposed
Collection-CAM, which generates the enhanced quality
of visual explanation while reducing the required exe-
cution time. Collection-CAM’s attention map generation
pipeline is illustrated in Figure 3. First, Collection-CAM
performs bottom-up hierarchical clustering using feature map
representation vectors. Then, it identifies the most effective
partition set among obtained partition hierarchy. After that,

FIGURE 2. Comparison of the conventional visual explanations according
to the feature map use cases. A combination with a higher proportion
value suggests that it has better localization capability. ResNet101 model
and ImageNet1k dataset were used. Feature use map cases are: Case 1 =

[‘layer4’], Case 2 = [‘layer3’, ‘layer4’], Case 3 = [‘layer2’, ‘layer3’, ‘layer4’]
and Case 4 = [‘layer1’, ‘layer2’, ‘layer3’, ‘layer4’].

Collection-CAM performs post-processing in different ways
depending on the level of the layer from which the feature
map is extracted, and generates a mask for each collection
obtained in the previous step. Finally, it measures how much
each mask contributes to the target class score to synthesize
an attention map. In III.1, we describe a series of feature map
clustering processes. In III.2, we describe the generation of
collection-wise masks using clusters and the synthesis of a
visual explanation.

A. ACQUISITION OF FEATURE MAP COLLECTION
Region-based saliency methods generate a better attention
map compared to activation-based saliency methods as pre-
viously introduced but require much longer execution time
due to large computational overhead. An idea that can be
considered to alleviate the computational overhead problem
of region-based saliency methods is to cluster similar types of
feature maps into a much smaller number of collections than
the number of target featuremaps to perform their processing.
We cluster feature maps of each layer into collections with
similar characteristics to generate masks for each collection
to improve the quality of the resulting saliency map and
reduce the required computation. This subsection describes
a specific procedure for securing clustered feature map col-
lection for each layer. To this end, we utilize each feature map
Ai’s representation vector ψi.

We define ψi ∈ 9 as a representation vector for Ai. It is
comprised of (a) Mean of feature Intensity(mii), (b) Standard
deviation of feature Intensity(sii), (c) Mean of feature Gradi-
ent (mgi), (d) Mean of feature Gradient (sgi) as:

ψi = (mii, sii,mgi, sgi) (5)

Equation 6 is a square euclidean distance between differ-
ent feature map presentation vectors, which is used for
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FIGURE 3. Overall procedure of the proposed Collection-CAM.

inter-vector dissimilarity measurement.

DV (ψi, ψj) = ‖ψi − ψj‖2 (6)

m(COi) is the centroid of the feature map presentation vector
belonging to the collection COi, as shown in Equation 7.

m(COi) =
1
|COi|

∑
ψk∈COi

ψk (7)

We can formulate objective function for a partition which has
NC collections as as Equation 8, where NC is within desired
number of collections range K.

minimize
NC∑
j=1

1
2|COj|

∑
ψi,ψi′∈COj

DV (ψi, ψi′ )

subject to
NC⋃
i=1

COi = Al,

for i 6= j, COi ∩ COj = ∅ (8)

In the Equation 8, if we replace feature map presentation
vector ψi with a series of points xi and feature map collection
COj with cluster Cj, it can be interpreted as an optimization
problem of the k-means clustering. The objective function of
the k-means clustering is denoted as:

minimize
k∑
j=1

∑
xi∈Cj

‖xi − µj‖2

subject to
k⋃
i=1

Ci = X ,

for i 6= j, Ci ∩ Cj = ∅ (9)

Equation 9 is proven to be NP-Complete [21]. To solve this
optimization problem, we leverage the hierarchical clustering
method that operates in a bottom-up direction to generate
partition hierarchy through a series of merging from |9| sin-
gleton collections. We perform hierarchical bottom-up clus-
tering based on the dissimilarity between different collections
DC(·). We define DC(·) as:
Definition 1 (Dissimilarity Between Collections): Extend-

ing DV (ψi, ψj), we denote squared error sum of COi as

S(COi)

S(COi) =
∑

ψk∈COi

‖ψk − m(COi)‖2 (10)

Leveraging [22], we define the increment of squared error
sum when COi and COj are merged1S(COi,COj) as dissim-
ilarity between collection DC(COi,COj), which is denoted as
Equation 11.

DC(COi,COj) = 1S(COi,COj)

= S(COi ∪ COj)− S(COi)− S(COj)

(11)

We specify procedures for sequentially acquiring partition
hierarchy PH based on DC(·). First, we measure the DC(·)
between the collections initialized as singleton as shown
in Equation 11. Among the collections, we search for the
collection pair with the minimal DC(·) to merge them into
a new collection. Then,DC(·) between the merged collection
and the remaining collections are measured. It repeats until a
partition with a collection number of 2 is secured.

As a result, we obtain a partition hierarchy PH =

{P2, . . . ,P|9|}, where k corresponds to the number of col-
lections held by partition Pk ∈ PH.
We validate the goodness of each partition Pk ∈ PH(∀k ∈

K) to select the partition utilized for collection-wise mask
generation. Clustering tries to gather representation vectors
belonging to the same collection as similar as possible, while
it tries to separate distinct representation vectors into differ-
ent collections. Clustering quality verification is the task of
determining the superiority and inferiority between different
partitions. For cluster quality verification for each partition,
we define clustering validation indicators. First, we define
DIC(COi), which is the dispersion of intra-collection for col-
lection COi ∈ Pk . DIC(COi) denotes average dissimilarity
between ψi′ ∈ COi and m(COi).

DIC(COi) =
1
|COi|

∑
ψi′∈COi

‖ψi′ − m(COi)‖
2 (12)

SIC(COi), which is the separation of inter-collection for col-
lection COi, is denoted as:

SIC(COi) = min
j6=i
‖m(COi)− m(COj)‖2 (13)
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From the perspective of DIC(·), the goodness of clustering
is to make a collection with small DIC(·) as possible. Mean-
while, from the perspective of SIC(·), the clustering quality
for a collection depends on how big it is. Considering these
perspectives together, we define the dispersion-separation
ratio for collection DSR(COi), which is an clustering quality
indicator for collection COi.
Definition 2 (Dispersion-Separation Ratio): We use the

difference and sum ratio of SIC(COi) and DIC(COi) to eval-
uate clustering quality of collection COi. We regard this as
the dispersion-separation ratio, which is denoted as:

DSR(COi) =
SIC(COi)− DIC(COi)
SIC(COi)+ DIC(COi)

(14)

As it can be seen from 14, we take SIC(COi) and DIC(COi)
into together to define DSR(COi), which is clustering quality
indicator for COi. We use the difference between SIC(COi)
and DIC(COi) at the numerator of DSR(COi) to make
DSR(COi) an increasing function for the collection COi
that has small DIC(COi) and large SIC(COi). In addition,
we place the sum of SIC(COi) and DIC(COi) at the denomi-
nator of DSR(COi) to prevent DSR(COi) from becoming too
large. We intend to prevent one collection from having an
excessive effect on the clustering quality indicator for par-
tition DSRA(Pk ), which is the average dispersion-separation
ratio of partition Pk . We denote it as:

DSRA(Pk ) =
1
k

∑
COi∈Pk

DSR(COi) (15)

We identify the partition with the high clustering quality
indicator value based on BottomUpClustering function
shown in Algorithm 1 and DSRA(dot). We provide detailed
description in Lemma 1.
Lemma 1 (Determination of Partition): Let PH = {Pk}

(∀k ∈ K) be a generated partition set through
BottomUpClustering function in Algorithm 1 when
partition size range is given asK. The partition used to create
the collectionmask, which has the largest clustering indicator
value, is denoted as:

P∗ = argmax
Pk∈PH

DSRA(Pk ) (16)

Proof: DSR(·) describes the clustering goodness of a
single collection. We regard COi to be the better clustering
the higher DSR(COi) that COi has. We evaluate the clus-
tering quality of the partition using DSRA(·), the average
value of DSR(·) of the collection belonging to a particular
partition. Accordingly, partitionPk ∈ PH having the highest
DSRA(Pk ) may be deemed as the best clustering result among
partitions in PH. �

B. GENERATE COLLECTION-CAM
We apply the method of generating the collection-wise mask
differently depending on the extraction location of the feature
map. When the extraction location of the target feature map
Ak is shallow layer(l < L), we calculate Âk by modifying
feature map intensity according to Ak ’s gradient at spatial

location (i, j) ∂Fc(Io)
∂Aki,j

to remove the background detail, which

is denoted as:

Âki,j =


Aki,j, if

∂Fc(Io)

∂Aki,j
> 0

0, otherwise
(17)

We combine spatial filtered feature map Âk in collection COs
to generate a maskMs, which is denoted as:

Ms = Up(ReLU (
∑

Âk∈COs

Âk )) (18)

The entire process of acquiring masks for shallow feature
maps is summarized in ShallowMapMask function in
Algorithm 1. In the case of the final feature map that focuses
on image semantics, we synthesize the collection-wise mask
using the global-average pooled gradient value for the feature
map, which is denoted as follows:

Mf = Up(ReLU (
∑
k∈COf

wckA
k )) (19)

wck =
1
Z

∑
i

∑
j

∂Fc(Io)

∂Aki,j
(20)

This process corresponds to the operation of the
FinalMapMask function in Algorithm 1. As the gradient
is in common for the mask generation process of each feature
map collection, we apply visual denoising to remove the noise
generated from the gradient, according to Equation 21.

Denoise(Ml, θ) =

{
mi,j, if mi,j > PI (Ml, θ)
0, otherwise

(21)

where PI (Ml, θ) denotes the θ th percentile intensity value of
Ml . Then, we obtain M ′l by scaling pixel intensities to [0,1]
range via normalization of Denoise(Ml, θ) as:

M ′l =
Denoise(Ml, θ)−min(Denoise(Ml, θ))

max(Denoise(Ml, θ))−min(Denoise(Ml, θ))
(22)

How to measure the importance of an individual collection
mask for model prediction is to obscure or perturb the rest
of the area highlighted by the collection mask. It enables
us to estimate how much it affects the decision of the deep
network, which is the ‘‘Black Box’’.We define themask-wise
increase of confidence (MIC) to measure the importance of a
collection mask in a deep model’s decision.MIC(·)’s detailed
description is provided in Definition 3.
Definition 3 (Mask-wise Increase of Confidence (MIC)):

We suppose that CNN F outputs a prediction Fc(Io) for
the input image Io. When replacing baseline image Xb with
Hadamard product of the collection maskM ′i and the original
image Io, we can quantify the degree to which it contributes
to the confidence score Fc(Io). We formally define MIC(M ′i ),
which is quantified contribution to the the confidence score
Fc(Io) of MIC(M ′i ) as Equation 23.

MIC(M ′i ) = Fc(Io �M ′i )− Fc(Xb) (23)
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Based on the mask contribution definition, we describe an
attention map generation of the proposed saliency method.
Lastly, we assemble an attention map using collection-wise
masks and corresponding weight as:

LcCollection−CAM = ReLU (
∑
i

αciM
′
i ) (24)

αci =
exp(MIC(M ′i ))∑
i exp(MIC(M

′
i ))

(25)

In Equation 25, Collection-CAM obtains weight for indi-
vidual collection mask, which is denoted withMIC(·). Given
an arbitrary input, the magnitude of the output score in
the layer that immediately precedes softmax is not fixed.
A method of utilizing output scores to limit them to fixed
categories is to utilize softmax. This motivates us to use the
softmax function for weights that are utilized in the linear
combination of collection masks. Also, as we are interested
only in pixels with a positive influence on the target class
prediction, we apply ReLU (·) to eliminate the influence of
negative pixels.

We provide complete detail of the implementation in Algo-
rithm 1. We cluster feature maps by layer level from which
feature maps are extracted to secure feature map collection.
Then, we apply a different collection mask synthesis function
for its level. Finally, we measure the mask-wise increase of
confidence for each collection mask, generating a saliency
map.

IV. EXPERIMENTS
We evaluate the performance of the proposed post-hoc atten-
tion method on CNN models designed for image classifica-
tion tasks. We conduct extensive experiments to answer the
following questions.
• What qualitative characteristics does the Collection-
CAM have?

• How effective is the Collection-CAM in reducing the
computation overhead of region-based saliency meth-
ods?

• How well does the Collection-CAM highlight the pixels
it considers important in the deep model’s decision-
making?

• How much does the highlighted area by the Collection-
CAM correspond to the real object area?

• Does the Collection-CAM reflect the change in model
parameters when creating a visual explanation?

Experimental Setup: We tested the Collection-CAM and
comparative saliency methods in an environment running
publicly available PyTorch 1.8.1 on nodes with Nvidia
RTX 3080 GPUs. The datasets used in the experiment
are openly accessible ImageNet1k val [23], UC Merced
[24], and CUB-200-2011 val [25] dataset. ImageNet1k Val
dataset has a total of 50,000 images across 1000 dif-
ferent categories. UC Merced dataset describes land use,
which holds 100 images for each category in 21 categories.
CUB-200-2011 Val dataset contains 5794 images for 200 dif-
ferent types of birds.

Algorithm 1 Collection-CAM Algorithm
INPUT: Deep Network F , Target layer L, Baseline Image Xb,
Input Image Io, Partition Size Range KS, Percentage Intensity θ
OUTPUT: Saliency Map LcCollection−CAM
01:function BottomUpClustering(9)
02: COi = {ψi},P|9| = {CO1, . . . ,CO|9|}
03: DC(COi,COi′ ) = ‖ψi − ψi′‖

2

04: for k = |9| to 2 do
05: (p, q)← argmin

i,j,(i6=j)
DC(COi,COj)

06: COr ← (COp ∪ COq)
07: Pk−1 ← Pk ∪ {COr } − {COp,COq}
08: Update DC(COr ,COj) where COj ∈ Pk−1
09: end for
10: PH← {P2, . . . ,P|9|}
11: return PH
12:end function
13:function ShallowMapMask(P,A)
14: for k = 1 to |A| do

15: Âki,j =

A
k
i,j, if ∂Fc(Io)

∂Aki,j
> 0

0, otherwise
16: end for
17: for k = 1 to |P| do
18: Mk ← ReLU (

∑
Âi∈COk

Up(Âi))
19: end for
20: return {M1, . . . ,M|P|}
21:end function
22:function FinalMapMask(P,A)
23: for k = 1 to |P| do
24: Mk ← ReLU (

∑
Ai∈COk w

c
i × Up(A

i))
25: end for
26: return {M1, . . . ,M|P|}
27:end function
28: Given the target layer LS = {1, . . . ,L} for Fc(Io), obtain
feature map AS = {A1, . . . ,AL} and gradient set GS =

{G1, . . . ,GL}
29: I ← {},M← {},M′

← {}

30: for l = 1 to L do
31: PHl ← BottomUpClustering(9l )
32: Pl ← argmax

Pk∈PHl

DSRA(Pk )

33: if l < L then
34: Ml ←ShallowMapMask(Pl ,Al )
35: else l < L
36: Ml ←FinalMapMask(Pl ,Al )
37: end if
38: M←M ∪Ml
39: end for
40: for k = 1 to |M| do
41: M ′k ←

Denoise(Mk ,θ )−min(Denoise(Mk ,θ ))
max(Denoise(Mk ,θ ))−min(Denoise(Mk ,θ ))

42: I ← I ∪ {M ′k � Io},M
′
←M′

∪ {M ′k }
43: end for
44: MIC(Ik )← Fc(Ik )− Fc(Xb)
45: αck ←

exp(MIC(Ik ))∑
l exp(MIC(Ik ))

46: LcCollection−CAM ← ReLU (
∑

k α
c
kM
′
k )

We consider threemodel architectures: VGG19, ResNet18,
and ResNet101. For ImageNet1k, we use a pre-trained model
available in the torchvision library. For CUB-200-2011 and
UC Merced, we trained VGG19, ResNet18, and ResNet101
by ourselves. Specifically, we finetune the final fully con-
nected layer with an SGD optimizer by setting the initial
learning rate as 0.01. In addition, we decay the learning rate
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FIGURE 4. Attention maps, deletion curve and insertion curve generated by Grad-CAM, Score-CAM and Collection-CAM for sampled image from
(a) ImageNet1k Dataset (b) CUB-200-2011 dataset.

by 0.1 at every 30 epochs. We train the models for a total
of 95 epochs. We resize ImageNet1k and CUB-200-2011
as (224 × 224 × 3), while resize UC Merced as (256 ×
256 ×3). Also, we set mean vector [0.485,0.456,0.406] and
standard deviation vector [0.229, 0.224, 0.225]. Also, we set
baseline input Xb and denoise degree θ to a zero matrix of
size corresponding to the input image and 0.1, respectively.
Evaluation Metric: We evaluate the saliency methods in

terms of faithfulness, localization ability, and quantitative
aspects of computation overhead. When modifying the orig-
inal input image based on the attention map, objective faith-
fulness is measured through a change in the target score.
We employ metrics such as Average Drop(AD) and Average
Increase(AI) [10], Insertion and Deletion [12]. AD and AI are
defined as:

AD =
100
N

N∑
i=1

max(0,Y ci − O
c
i )

Y ci
(26)

AI =
100
N

N∑
i=1

Sign(Y ci > Oci ) (27)

where N refers to the number of data instances that make up
the dataset. Y ci refers to the softmax output value for the target
class c of the ith image. Oci refers to the softmax output value
when the input image is masked by the generated attention

map. Sign(·) is an indicator function, which returns 1 if the
input is True and 0 if it is False. Furthermore, we perform
deletion and insertion test proposed in [12] to supplement AD
and AI . deletion measures the reduction in the confidence
score of the target class when removing pixels from the
original image according to the generated attention map’s
intensity. On the contrary, Insertion measures the increase in
confidence score of the predicted class when introducing the
image pixels to the baseline matrix according to the saliency
map. While the small area under the curve(AUC) and sharp
drop indicate a good explanation for the Deletion curve, the
large AUC and rapid increase indicate an excellent visual
explanation for the Insertion curve. In this work, we introduce
or remove 224× 8.3.57%) or 256× 8.3.13%) pixels to draw
the curves. Examples of the curves are given in Figure 4.
Overall enables a comprehensive understanding of deletion
and insertion results, which is defined as:

Overall = AUC(Insertion)− AUC(Deletion) (28)

To measure the localization ability of each saliency
method, we utilize Proportion [13], which is defined as
follows:

Proportion = 100×

∑
Lc(i,j)∈bbox∑

Lc(i,j)∈bbox +
∑
Lc(i,j)/∈bbox

(29)
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FIGURE 5. Visualization of saliency maps(without overlapping over the input image) on ResNet18 generated by Collection-CAM and baselines.
(a) to (d): ImageNet1k, (e),(f): CUB-200-2011, (g),(h),(i): UC merced dataset.

Equation 29 implements the input image as a binarization
method that allocates 1 to the inner area and 0 to the outer
area, considering howmuch of the energy of the saliency map
flows into the bounding box of the target class.

A. QUALITATIVE EVALUATION VIA VISUALIZATION
In this part, we start with visualizing heatmaps generated
by applying our proposed Collection-CAM and the state-
of-the art baselines(Guided Backpropagation [15], Integrated
Gradients [16], Grad-CAM [9], Grad-CAM++ [10], Layer-
CAM [11], RISE [12] and Score-CAM [13] on sample
images from different datasets to compare them qualitatively.

In the visual examination for the individual attention map,
we expect that a saliency method with high explainability has
following characteristics:

• It has a low visual noise level.
• Its highlighted area corresponds to the target object’s
location.

• It reflects the change of the target class well.
• When an input image with multiple objects belonging to
the same class is given as input, it locates them well.

In Figure 5, we show heatmaps for sample images from
ImageNet1k [23], CUB-200-2011 [25] and UC Merced
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FIGURE 6. Inspection of class discriminability for Collection-CAM.
(a) Input image (b) Saliency map with target class ‘bull mastiff’
(c) Saliency map with target class ‘tabby cat’.

[24] dataset on ResNet-18 [2]. Gradient-based methods,
Guided Backpropagation, and Integrated Gradients capture
target objects’ outlines well. However, their heatmaps appear
in the form of scattered points and thus contain much
noise. Grad-CAM, Grad-CAM++, and Score-CAM gener-
ate smooth attention maps. However, they attend to a much
larger region than the target object region. Although RISE
seems to generally attend to smaller areas than previously
described methods, its explainability depends on how well
the random mask generation proceeds per the target object.
In Figure 5 (h), baseball diamond class, while other methods
attend the infield part, RISE attends outfield and contains
much noise around the region with high intensity. Layer-
CAM synthesizes an attention map similar to the shape of
the target object. Nonetheless, its high-intensity region is
much small and scattered. Our proposed Collection-CAM
attends the target object region with strong intensity. How-
ever, like in Figure 5 (i), Collection-CAM sometimes gen-
erates a saliency map containing background noises. In the
figure, noises with high intensity are accompanied in the top
and the bottom part, where the airplane object is not located.
This phenomenon is also observed in the saliency map of
Layer-CAM, which utilizes shallow feature maps and final
feature maps to synthesize the visual explanation. It seems
that these visual noises are caused by the mask generated
from the shallow layer. Although it sometimes accompanies
noises from the shallow masks, the saliency map generated
by Collection-CAM captures the object region well.

In Figure 6, we demonstrate that Collection-CAM can dis-
criminate and visualize objects belonging to different classes
in the input image. ResNet-101 model classifies the input
image as class ‘bull mastiff’ with a confidence score of
0.582 and class ‘tabby cat’ with a confidence score of 0.051.
As Collection-CAM accurately locates both two different
objects, we can confirm its ability to discriminate different
objects. This discrimination ability is attributed to the gen-
eration of each mask and the application of corresponding
weight being relevant to the response to the target class.
Therefore, it is reasonable to expect that our method discrim-
inates against different objects in the input image.

Also, in Figure 7, we show that Collection-CAM’s local-
ization ability for multiple objects outperforms other meth-
ods. In Figure 7, we see that Score-CAM, Layer-CAM, and
Collection-CAM capture the location of multiple objects.
However, like in Figure 5, Score-CAM attends a much

FIGURE 7. Inspection of location capability for multi-objects.

larger area than the objects’ region. While Layer-CAM
produces saliency maps that have scattered strong inten-
sity pixels, Collection-CAM generates a more concentrated
attention map compared to other methods. The reason for
Collection-CAM’s better explainability is: 1) A collection-
wise mask is produced based on the confidence score of the
target class and 2) The weight used to assemble them is also
obtained based on the contribution to the confidence score of
the target class.

B. SALIENCY MAP GENERATION TIME EVALUATION
We first analyze the computational time model of Grad-
CAM [9], Grad-CAM++ [10], Layer-CAM [11], Score-
CAM [13], RISE [12] and the proposed Collection-CAM,
which are observed with their producing smooth saliency
maps in visualization results. We denote the layer set of the
deep network φ asLSφ = {CSφ1 , . . . ,CS

φ
fin}, the computation

time of the forward propagation for a single input image as
FPφ , and the computation time of backward-propagation to
ith layer, namely channel set CSφi ∈ LSφ as BPCS

φ
i . Then,

we approximate the computation time model of Grad-CAM

and Grad-CAM++ as FPφ + BPCS
φ
fin . Meanwhile, the com-

putation time model of Layer-CAM, which requires gradient
for ∀CSφi ∈ LSφ , is approximated as FPφ + BPCS

φ
1 . On the

other hand, RISE and Score-CAM, which are classified as
region-based saliency methods, perform forward propaga-
tion by the number of randomly generated random masks
|RM | and the number of channels |CSφfin| of the final layer,
respectively. Besides, RISE requires random mask genera-
tion time |RM | × MG. Thereby we approximate compu-
tation time model for Score-CAM and RISE as |CSφfin| ×
FPφ and |RM | × (FPφ + MG), respectively. Finally, our
proposed Collection-CAM performs forward propagation as
many as the sum of the identified collection number for each
layer

∑fin
i=1 |Pi|. Denoting collection identification time as

CT, then the approximated computation time model for the
Collection-CAM is

∑fin
i=1 |Pi| × FP

φ
+ CT + BPCS

φ
1 .

In Table 2, we report the average execution time when the
individual saliency method generates an attention map for a
single input image using a single NVIDIA RTX 3080 GPU.
Grad-CAM, Grad-CAM++, and Layer-CAM show the
shortest average execution time for all listed combinations
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TABLE 2. Execution time to generate a saliency map according to deep model and input image resolution.

TABLE 3. Faithfulness evaluation results. (Lower is better for average drop and deletion. higher is better in average increase, insertion and overall.
The best figures are in bold.)

TABLE 4. Localization ability evaluation on energy-based pointing game. (Higher is better. The best figures are in bold.)

of (Deep model, Resolution), and there is no significant
change in execution time depending on the difference in
input image resolution. This is because their attention map
generation mechanism utilizes feature maps and gradient-
derived weights, thereby requiring only single execution of
forward propagation and backward propagation. In contrast,
Score-CAM and RISE, which are classified as region-based
saliency methods, require a much longer time for atten-
tion map generation. This is because Score-CAM requires
repetitive forward propagation proportional to the number
of feature maps from the target layer(i.e. ResNet18:512,
ResNet101:2048, VGG19:512), as can be observed from the
computation timemodels. Similarly, RISE requires a process-
ing time proportional to its large number of masks(>4000).
Compared to Score-CAM and RISE, Collection-CAM
achieves a significant reduction in the execution time(up
to 98.27% reduction from Score-CAM, 99.73% reduction

from RISE) by grouping similar feature maps into a
collection.

C. FAITHFULNESS EVALUATION
In this part, we randomly sample a total of 2000 image data
instances from ImageNet1k, CUB-200-2011, andUCMerced
to investigate the faithfulness of explanation by measuring
metrics such as AD, AI , and deletion and insertion test results
on ResNet18, ResNet101, and VGG19. Considered saliency
methods are: Grad-CAM [9], Grad-CAM++ [10], Layer-
CAM [11], RISE [12], Score-CAM [13] and Collection-
CAM.

As shown in Table 3, Collection-CAM outperforms
other methods for various deep model setup. A good
performance on the faithfulness evaluation suggests that
Collection-CAM not only reduces the execution time of
conventional region-based saliency methods but also it can
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FIGURE 8. Sanity check result.

successfully find out the most noticeable parts of the target
objects by revealing the decision-making process of the CNN
that is currently used.

D. LOCALIZATION ABILITY EVALUATION
In addition to the faithfulness of explanation, we evaluate the
localization ability of attention maps generated by different
methods through Proportion. The testing set is constructed
with 500 data randomly sampled from ImageNet1k Valida-
tion Split and CUB-200-2011 Val Split both of them provide
ground-truth bounding box annotations. At this time, the final
value for each technique is expressed as an average percent-
age and summarized in Table 4. In terms of Proportion, the
proposed Collection-CAM shows at least 1.17 times up to
1.43 times better performance than other methods, which
proves that the noise of the proposed saliencymethod is much
smaller than other methods. Particularly, we observe that
Collection-CAM attends to different target objects with more
than 60% energy concentrated on various base deep model
setups. Gradient-based methods such as Guided Backpropa-
gation [15] and Integrated Gradients [16] are excluded from
the baseline methods as their attention maps are represented

FIGURE 9. Visualization of object proposal on selected images with
(a) selective search and (b) selective search+Collection-CAM. Green
rectangles and red rectangles refer to object proposals and GT bounding
boxes, respectively.

as edge form as shown in Figure 5, which is far from other
methods.

E. SANITY CHECK
We verify whether the Collection-CAM is susceptible to the
model parameter through the model parameter randomization
test proposed in [26]. To this end, we performed two ran-
domization tests to observe changes in the generated saliency
map in the independent layer randomization setting, which
randomizes the cascading randomization from the last convo-
lutional layer in the downward direction and fixes the single
layer one by one, and the rest to the original model parameter
state. As can be seen in Figure 8, in the case of Collection-
CAM, it is sensitive to changes in the CNNmodel parameters
to generate different saliency maps, which can be considered
to pass the sanity check accordingly.

F. GENERATING OBJECT PROPOSAL
Object detection requires many precise annotations for
ground-truth(GT) bounding boxes, but it requires significant
human labor to manually prepare such a dataset. To over-
come this difficulty, a series of studies uses weakly super-
vised object detection(WSOD) based on selective search [27].
In this part, we show that the proposed method can be used to
improve the quality of object proposals in WSOD. The pro-
cedure of object proposal, where Collection-CAM is applied
simply, is as follows. First, we generate a saliency map Lc

∗
i

for a image-level label c∗i ∈ C . Then we obtain a set PL
which contains peak intensity pixel positions of Lc

∗
i . Finally,

we take the candidate with the highest confidence score in
object proposal candidates containing peak pl ∈ PL, as object
proposal. As shown in Figure 9, object proposals generated
by selective search do not fit well into GT bounding boxes
for both single and multi-object images. In contrast, using
Collection-CAM together shows object proposals with better
quality. This is because determining object proposal only by
the confidence score ignores the location information of the
object. On the other hand, when Collection-CAM is used
with selective search, it is more effective in generating object
proposals than using selective search solely as it enables to
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use of location information of parts considered as objects in
the deep network.

V. CONCLUSION
In this paper, we propose the Collection-CAM that generates
a saliency map using the feature map of the feature pyramid
in a computationally efficient manner. The mechanism of the
operation of the Collection-CAM is to combine them with
Collection to generate an initial mask, calculate the contribu-
tion of each initial mask, and weigh accordingly in a positive
manner to generate a saliency map with a linear combination
of eachmask. Various experiments withmultiple deepmodels
(ResNet18, ResNet101, and VGG19) and multiple datasets
(ImageNet1k, CUB-200-2011, and UCMerced) demonstrate
that the proposed Collection-CAM not only reduces the com-
putation of existing region-based saliency methods by a large
margin but also provides enhanced explainability in terms of
the faithfulness and the localization ability.

REFERENCES
[1] D. Silver, A. Huang, and C. J. Maddison, ‘‘Mastering the game of go

with deep neural networks and tree search,’’ Nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[3] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078.

[4] H. Kim, D. C. Jung, and B. W. Choi, ‘‘Exploiting the vulnerability of
deep learning-based artificial intelligence models in medical imaging:
Adversarial attacks,’’ J. Korean Soc. Radiol., vol. 80, no. 2, pp. 259–273,
2019.

[5] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Mü ller, and W. Samek,
‘‘Analyzing classifiers: Fisher vectors and deep neural networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2912–2920.

[6] G. Ras, N. Xie, M. Van Gerven, and D. Doran, ‘‘Explainable deep learning:
A field guide for the uninitiated,’’ J. Artif. Intell. Res., vol. 73, pp. 329–397,
Jan. 2022.

[7] Y. Ji, H. Zhang, Z. Zhang, and M. Liu, ‘‘CNN-based encoder–decoder
networks for salient object detection: A comprehensive review and recent
advances,’’ Inf. Sci., vol. 546, pp. 835–857, Feb. 2021.

[8] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[9] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[10] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
‘‘Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), Mar. 2018, pp. 839–847.

[11] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei, ‘‘LayerCAM:
Exploring hierarchical class activation maps for localization,’’ IEEE Trans.
Image Process., vol. 30, pp. 5875–5888, 2021.

[12] V. Petsiuk, A. Das, and K. Saenko, ‘‘RISE: Randomized input sampling
for explanation of black-box models,’’ 2018, arXiv:1806.07421.

[13] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel,
and X. Hu, ‘‘Score-CAM: Score-weighted visual explanations for convo-
lutional neural networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 24–25.

[14] A. Kapishnikov, T. Bolukbasi, F. Viegas, and M. Terry, ‘‘XRAI: Better
attributions through regions,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 4948–4957.

[15] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, ‘‘Striving for
simplicity: The all convolutional net,’’ in Proc. ICLR (Workshop Track),
2015, pp. 1–14.

[16] M. Sundararajan, A. Taly, and Q. Yan, ‘‘Axiomatic attribution for deep
networks,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3319–3328.

[17] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff,
‘‘Top-down neural attention by excitation backprop,’’ Int. J. Comput. Vis.,
vol. 126, no. 10, pp. 1084–1102, Oct. 2018.

[18] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, ‘‘Smooth-
Grad: Removing noise by adding noise,’’ 2017, arXiv:1706.03825.

[19] D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and
B. McWilliams, ‘‘The shattered gradients problem: If resnets are the
answer, then what is the question?’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 342–350.

[20] P. F. Felzenszwalb and D. P. Huttenlocher, ‘‘Efficient graph-based image
segmentation,’’ Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, Sep. 2004.

[21] A. Vattani. (2009). The Hardness of K-Means Clustering in the Plane.
[Online]. Available: https://cseweb.ucsd.edu/~avattani/papers/kmeans_
hardness.pdf

[22] J. H. Ward, Jr., ‘‘Hierarchical grouping to optimize an objective function,’’
J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236–244, 1963.

[23] O. Russakovsky, ‘‘Imagenet large scale visual recognition challenge,’’ Int.
J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[24] Y. Yang and S. Newsam, ‘‘Bag-of-visual-words and spatial extensions
for land-use classification,’’ in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst. (GIS), 2010, pp. 270–279.

[25] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, ‘‘The caltech-
ucsd birds-200–2011 dataset,’’ California Inst. Technol., Pasadena, CA,
USA, Tech. Rep. CNS-TR-2011-001, 2011.

[26] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim,
‘‘Sanity checks for saliencymaps,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 1–5.

[27] J. R. R. Uijlings, ‘‘Selective search for object recognition,’’ Int. J. Comput.
Vis., vol. 104, no. 2, pp. 154–171, Feb. 2013.

YUNGI HA received the B.S. degree in electronic
and electrical engineering from Sungkyunkwan
University, Suwon, South Korea, in 2013, and the
M.S. degree from KAIST, Daejeon, South Korea,
in 2014, where he is currently pursuing the Ph.D.
degree in electrical engineering. His research
interests include online learning and efficient
resource management in heterogeneous comput-
ing environment.

CHAN-HYUN YOUN (Senior Member, IEEE)
received the B.Sc. andM.Sc. degrees in electronics
engineering fromKyungpook National University,
Daegu, South Korea, in 1981 and 1985, respec-
tively, and the Ph.D. degree in electrical and com-
munications engineering from Tohoku University,
Japan, in 1994. Before joining the University, from
1986 to 1997, he was the Head of the High-Speed
Networking Team, KT Telecommunications Net-
work Research Laboratories. Since 1997, he has

been a Professor at the School of Electrical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon, South Korea, where
he was an Associate Vice-President of office of planning and budgets, from
2013 to 2017. He is also theDirector of theGridMiddleware Research Center
and the XAI Acceleration Technology Research Center, KAIST, where he
is developing core technologies that are in the areas of high performance
computing, explainable AI system, satellite imagery analysis, and satellite
onboard computing with deep learning acceleration system. He wrote a
book on Cloud Broker and Cloudlet for Workflow Scheduling (Springer,
2017). He was selected to the inaugural class of the IEEE Computer Society
Distinguished Contributor, in 2021. Hewas the General Chair for the 6th EAI
International Conference on Cloud Computing (Cloud Comp 2015), KAIST,
in 2015. He was also a Guest Editor of the IEEE WIRELESS COMMUNICATIONS,
in 2016, and served as a TPC member for many international conferences.

112788 VOLUME 10, 2022


