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ABSTRACT We propose a new low-diameter interconnection network called FleX, which offers high
flexibility when installing interconnections in a HPC system. FleX consists of multiple layers with only
connections between neighboring layers and not within each layer. These structural properties make it easy
to achieve a low diameter with regardless of the scale. The cross-like connections between the adjacent
layers in FleX impart various alternative minimal paths, allowing FleX to have high resiliency and a wide
bisection width. We also discuss the minimal routing scheme and a stochastic load balancing scheme
(LBR) for the proposed interconnection network. Through cycle-based simulations, the performance of
FleX is evaluated, and the cost and power consumption analyses in comparison with other interconnection
networks are also conducted. We verify that FleX has high configuration flexibility with regard to cost and
performance, and also provides low latency and high saturation throughput with the same cost over the
legacy interconnection networks for the HPC system. Moreover, being synergied with the proposing LBR,
we also verify that FleX can expand its saturation throughput further while only sacrificing the latency
slightly.

INDEX TERMS Network topology, parallel computing system, routing algorithm.

I. INTRODUCTION

VARIOUS interconnection networks [1]–[7] that in-
terconnect computing resources for the high perfor-

mance computing (HPC) systems have been introduced to
utilize computing resources more effectively with several
packet-processing schemes [8]–[10]. Such networks has been
adopted in HPC systems globally [11]–[19]. Fat tree [5],
[20], for example, has been widely used among Top500
HPC clusters [21], proving its effectiveness given its use in
practical HPC systems [11]–[13], [16]. Although fat tree is
a classic example, it also has several drawbacks, such as
an increased network diameter and exponential growth of
the top-level router load, when used in the construction of
a large-scale multi-level interconnection network.

Some studies [22]–[25] have found that an equality net-
work can improve latency and throughput performance out-
comes over a 2-tier fat tree system, though this type of
network still requires the huge number of inter-router links.
Dragonfly [1] proposed a virtual-router idea in which serveral
routers constitute a single group and are considered as one

high-radix virtual router. Although this idea overcomes the
issue of an excessive load on a single router, the network
becomes more vulnerable to inter-group packet congestion.
Slim Fly [4] has proposed what is known as the near Moore
Bound (MB) network configuration, which has a specific
and complicated algorithm to choose the router radix and
terminal concentration for each router. For this reason, Slim
Fly topology cannot readily support various numbers of
terminals (end nodes). Therefore, although Slim Fly can
construct a near MB network with a diameter of only two (or
three), full realization or changing the scale of the network is
challenging.

In this paper, we propose a novel FleX interconnection
network for a HPC system. FleX suggests a layered architec-
ture in which each layer on the z-axis (z = 0, 1, ..., Nz − 1)
consists of Nx × Ny routers. Each routers on a single layer
can be coordinated with 3 basis points (x, y, z). Connections
between routers are established when two routers on an ad-
jacent layer share only one between the x and y coordinates.
This results in cross-like connections. Cross-like connections
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FIGURE 1. Average hop count over interconnection networks on random
uniform traffics using minimal routing.

provide many alternative paths between any routers and
thereby guarantee a wide bisection width and high fault
tolerance. FleX has no limits on the number of layers in
general; however, we focus on a three-layered FleX network
(diameter 2) in this paper. By doing so, the proposed FleX
network has the lowest network diameter of two, making it
essentially identical to Slim Fly, though it can be realized
more easily in various environments. Fig. 1 explains the mo-
tivation behind FleX by comparing the average hop count of
interconnection networks with a total terminal size of 1,000
on a random uniform traffic pattern with minimal routing.
The configurations for each of the networks in Fig. 1 are fully
described in Table 6 and in Section IV-B.

As the proposed FleX contains the various detouring paths
without increasing the hop count, it can greatly extend its sat-
uration throughput under adaptive routing. Accordingly, we
also propose a new stochastic load balancing routing scheme
(LBR) that can aptly utilize the considerable diversity of
alternative paths for FleX to extend the saturation throughput.

Throughout this paper, details of the proposed FleX topol-
ogy are presented, as are the analyses on the structural char-
acteristics of FleX and the minimal routing scheme for FleX.
Furthermore, cost, power consumption, and latency perfor-
mance evaluations are conducted while comparing FleX to
four conventional interconnection networks. The experimen-
tal results demonstrate that the proposed FleX interconnec-
tion system is robust against serious link failures (a nearly
5% enhancement over HyperX at a similar cost) and has the
advantages of cost efficiency and greater energy efficiency
compared to other interconnection networks. Moreover, FleX
can be flexibly configured such that can easily adapt to
various cost and performance constraints while also showing
lower latency (similar to HyperX with diameter 2) and higher
levels of saturation throughput (largely extended by adaptive
routing; more than a ×2 extension by the proposed LBR
over the minimal routing) compared to other interconnection
networks.

In the following section, first we examine the conventional
interconnection networks, in Section II. In Section III, de-
tails of the proposed interconnection network model and the
load balancing scheme are presented. Finally, the simulation-

based evaluation of the proposed interconnection network
model and load balancing scheme are presented in Sec-
tion IV, mainly focusing on the configuration cost, power
consumption and latency performance.

II. PREVIOUS WORKS
The proposed FleX interconnection system is mainly moti-
vated from two brilliant interconnection networks: Dragonfly
and HyperX. Thus, in order fully to deliver the concept
of the proposed FleX network, certain aspects of dragonfly
and HyperX topologies should be introduced in that they
motivated our work. Therefore, in this section, we provide
information about some of the key aspects of these two
interconnection networks.

A. DRAGONFLY
Dragonfly [1] is a three-level hierarchical network with the
router at the bottom, group in the middle, and system on
the top. Instead of connecting routers directly with system-
level global channels, dragonfly suggested a group-level,
which acts as a high-radix router with interconnections via
global channels, in a system. The basic configuration of the
dragonfly topology is as follows:

Step 1. A system consists of g groups.
Step 2. Groups are connected to each other via single

global channel.
Step 3. In each group there are a routers.
Step 4. Routers are fully connected within a group via

local channels.
Step 5. Routers are connected to other groups via h

global channels.
Step 6. Each router is connected to p terminals.

While physical routers have a radix of k = p + a + h − 1,
groups in the resulting network act as virtual global routers
with a radix of k′ = a(p+ h). From a system-level perspec-
tive, virtual routers are fully connected. Therefore, dragonfly
achieves a very low global diameter, allowing this network
significantly to reduce the usage of long and expensive global
channels compared to a network built directly from radix k
routers, thereby reducing the overall construction cost.

Dragonfly essentially has no restrictions on its configura-
tion if the above fundamental requirements are met. How-
ever, it is recommended to meet a = 2p = 2h for balancing
the channel load. Such recommendation comes from the ratio
of the local and global channels through which a packet
traverses and can be considered as a mild restriction on the
configuration in order to guarantee the maximum perfor-
mance of the network. Hence, there are limited candidates
with regard to the number of end nodes when constructing a
full-capacity dragonfly network.

B. HYPERX
HyperX [2] topology is an interconnection network in which
routers are directly connected to each other. The basic con-
figuration of the HyperX topology is as follows:
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Step 1. Routers are assigned a L-dimensional integer
coordinate I = (I1, ..., IL).

Step 2. The k-axis value Ik(k = 1, ..., L) can have
values from 0 to upper limit Sk− 1, so the entire
network consists of P = ΠL

k=1Sk routers.
Step 3. Connection is established when coordinates of

two routers Ia, Ib satisfy the following condi-
tions :

• Iak ̸= Ibj if, k = j
• Iak = Ibj if, k ̸= j

Step 4. Each router is connected to T terminals.
As there is no limit on the number of dimensions L, or on the
width of each dimension Sk, HyperX topology can be applied
technically to any number of terminals or routers. Further,
even with the same number of terminals, HyperX can provide
numerous configurations.

Although the HyperX topology can be readily adapted to
various environments given its flexibility, the performance of
each configuration differs. Thus, criteria for finding the best
possible configuration are suggested. For a given maximum
router radix R, the total number of wire connections for each
router should not exceed R, where Kk denotes the number of
wires connecting each router in dimension k, with

T +ΣL
k=1Kk(Sk − 1) ≤ R. (1)

The number of terminal connections should be at least
identical to the number of terminals but cannot exceed the
maximum number of terminals 2R−1

N ≤ TP = T (ΠL
k=1Sk) ≤ 2R−1. (2)

Given the desired relative bisection bandwidth B, the net-
work should have a larger relative bisection bandwidth β

β ≡ min(KkSk)

2T
≥ B. (3)

Satisfying the criteria above ((1),(2),(3)), one can find the
suitable configuration for the given environment by searching
for a feasible configuration with the lowest cost and diameter.
However, it should be considered that a trade-off relationship
between the cost and diameter, in which the cost increases
with an increase in the number of channels as the diameter,
or the dimension, decreases, and the cost decreases as the
diameter increases.

III. FLEX TOPOLOGY MODEL
As described in Section II, dragonfly tried to reduce the
network building cost by reducing the number of global
channels. However, as the constraint for constructing the
network is added, the number of available network config-
urations became limited. On the other hand, HyperX can be
configured with less constraints, however, as the connections
between each router in each dimension are fully connected,
it is practically hard to expand the scale from the initially
installed interconnect system. Taking these advantages and
disadvantages of each other topologies into account, we pro-
pose a new network topology that can be flexibly configured

with the low cost, and can achieve better performance (i.e.,
low latency and high saturation throughput) on the same cost.

The detail description and analysis about FleX is presented
in this section, and the symbols used in the description are
listed in Table 1.

TABLE 1. Symbols for FleX description.

Symbol Explanation

N Number of terminals in the network
p Number of terminals connected to each router
Nx Number of routers in x-axis on each layer
Ny Number of routers in y-axis on each layer
Nz Number of layers
k Radix of the router

A. TOPOLOGY DESCRIPTION
FleX mainly consists of multiple layers with Nx × Ny

arrays of 2-dimensional logical plane as shown in Fig. 2
(at next page). Each layer in FleX is connected with neigh-
boring layers as a ring. A router in a specific position is
denoted as (x, y, z) where x ∈ X, y ∈ Y, z ∈ Z and
X = {0, 1, ..., Nx − 1}, Y = {0, 1, ..., Ny − 1}, Z =
{0, 1, ..., Nz − 1} as shown in Fig. 2.

For all each router in (x, y, z) where ∀x ∈ X,∀y ∈
Y, ∀z ∈ Z, connections to all possible routers in (x′, y′, z′)
that meet one of the following conditions are established.

z′ = (z + 1) mod Nz , y′ = y, ∀x′ ∈ X s.t. x′ ̸= x (4)

z′ = (z + 1) mod Nz , x′ = x, ∀y′ ∈ Y s.t. y′ ̸= y (5)

Equation (4) means that routers in the next layer with having
same y-axis value and different x-axis value are connected
to make links to next layer’s x-axis direction. Likewise,
Equation (5) means that routers in the next layer with having
same x-axis value and different y-axis value are connected
to make links to next layer’s y-axis direction. In addition, p
terminals are connected to each router.

The following equations present the topology with a graph
G = (V,E) as a pair of set V for vertices (routers) and set
E for edges (links). The i-th router in position (x, y, z) is
denoted as vertex vi = (x, y, z), and the link between router
va = (x, y, z) and router vb = (x′, y′, z′) is denoted as edge
ej = (va, vb) = ((x, y, z), (x′, y′, z′)). Lz is 2 if Nz = 2,
and otherwise Lz = Nz .

V = {vi|0 ≤ i ≤ (NxNyNz − 1)}
= {vi = (x, y, z)|i = NxNy · z +Nx · y + x,

x ∈ X, y ∈ Y, z ∈ Z}
(6)

E = {ej |0 ≤ j ≤ (NxNyLz(Nx +Ny − 2)− 1)}
= {((x, y, z), (x′, y′, z′))|x ∈ X, y ∈ Y, z ∈ Z,

z′ = (z + 1) mod Nz,

(x′ ∈ X s.t. x′ ̸= x, y′ = y) ∨ (y′ ∈ Y s.t. y′ ̸= y, x′ = x)}
(7)
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FIGURE 2. General structure of the proposed FleX interconnecting network and its detail description for connections between inter layers.
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FIGURE 3. Scalability comparison with regards to the network radix.

The topology has the (Nx × Ny)Nz routers in total and
NxNyNzp terminals in total. For each router, it has p links
with terminals, (Nx− 1) links with next layer’s x-axis direc-
tion, and (Ny − 1) links with next layer’s y-axis direction.
In case of Nz ≥ 3, each router also has (Nx − 1) links
with previous layer’s x-axis direction and (Ny − 1) links
with previous layer’s y-axis direction. Therefore, in 2-layer
structure, radix k for the router is (Nx + Ny + p − 2), and
otherwise (2Nx + 2Ny + p − 4). In addition, as each router
has (k− p) links with other routers and there are (NxNyNz)
routers in total, the number of links between each other router
is NxNyNz(k − p)/2.

Fig. 3 shows the scalability comparisons over the various
topologies and Moore bounds. As a metric of the scalability,
we observed the maximum number of configurable routers
with regards to the network radix which corresponds to the
number of ports connected to only the other routers. In

Fig. 3, the number of layers in FleX is fixed to 3, and the 2-
dimensional HyperX is denoted as HyperX. FleX can achieve
20.28% of diameter-2 Moore bound when the network radix
is 100. Dragonfly achieves 15.38% of diameter-3 Moore
bound, and Slim Fly can achieve 90.00% of diameter-2
Moore bound. However, due to the structural characteristics
of only layer-to-layer connections of FleX without intra-layer
connectivity, the actual network configuration cost for FleX
is relatively small and performance shows low latency by
low-diameter structure. The detail cost and performance for
FleX is evaluated in Section IV.

B. ANALYSIS ON STRUCTURAL PROPERTIES

FleX has different network diameter with regards to the
number of layers, and diameter increases as the number of
layers increases larger than three. We mainly analyze 3-layer
FleX structure that has the minimum diameter and examine
the structure. For the structural analysis, comparisons with
other topologies were conducted mainly over dragonfly, 2-
dimensional HyperX, 3-level fat tree, and Slim Fly. Each
topology was set as the configuration that allowed each
topology to have a full global bandwidth. Dragonfly was
configured to satisfy a = 2p = 2h, 2-dimensional HyperX
had same size on each dimension and was configured to
satisfy p = ⌊k/3⌋. 3-level fat tree was set to have p = ⌊k/2⌋,
Slim Fly was configured to meet p = ⌈k/3⌉ as specified
in [4]. For FleX, we analyzed on the settings that satisfy
Nx = Ny and the p = ⌊k/3⌋ that is equal to the number
of links from each router to the routers on the next layer for
full global bandwidth.
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TABLE 2. Network diameter of various interconnection networks.

Topology Use Case Diameter

Fat tree (3-level) Tianhe-2A [16] 4
Dragonfly Cray XC50 [17] 3
HyperX (2-dimensional) HPE Lab [27] 2
Slim Fly - 2
FleX (3-layer) - 2

1) Network Diameter

For 3-layer FleX, as any destination can be reached by
passing whole 2 neighboring layers, the network diameter
of 3-layer FleX becomes 2. Compared to the conventional
topologies as shown in Table 2, 3-layer FleX has the lowest
diameter along with the Slim Fly and 2D HyperX. This
low-diameter characteristics contribute to low latency perfor-
mance for the network. We also analyze the whole possible
minimal paths in FleX where the distance of the maximum
shortest path is 2 (fully described in Section III-C1). Such
characteristic can also be empirically evaluated as conducted
in conventional studies [1], [2], [4], using Booksim [26] cycle
accurate simulator to verify in a hop count level. Accordingly,
we further verified that FleX ensures diameter of 2 from
empirical evaluation which is described on Section IV-B in
detail.

2) Distance

For each router in 3-layer FleX, (k − p) = (2Nx +
2Ny − 1) routers are connected with distance one, and
rest (3NxNy − (k − p) − 1) routers are connected with
distance two. Therefore, for all 3NxNy

C2 minimal path,
3NxNy(2Nx + 2Ny − 4)/2 paths has distance one, and
3NxNy(3NxNy − (k − p)− 1)/2 paths has distance two in
total. Fig. 1 shows the average hop count over various topolo-
gies using minimal routing, which is obtained from the cycle
accurate simulation. The detail configurations for topologies
are described in Table 6. In the figure, the average hop count
for end terminal-to-terminal communication shows less than
3 in the 3-layer FleX topology, and it means that the distance
between the routers does not exceed 2. In addition, due to the
structural characteristics of FleX, various detouring minimal
paths exist which is described on Section III-C1 in detail.

3) Bisection Width

As a metric for true bandwidth of entire network system, we
analyze the bisection width which is the minimum number of
edges to be removed to partition the topology into two equal
partitions. In case that Nx and Ny are even, bisection cut of
3-layer FleX is sliced at the smallest axis among x and y axes.
For each router, the number of edges that are connected to the
next layer and meet the bisection cut is min(Nx, Ny)/2. As
the number of routers in each layer is NxNy , and the number
of connections with next layer is 3, the bisection width results
in (8) where NR denotes the number of total routers in the
topology.

TABLE 3. Partitioning results for verifying the bisection width of FleX.

Nx Ny NR Bisection Width (eq. 8) Partitioner Results

4 4 48 96 96
5 4 60 120 120

15 20 900 6,750 9,000
20 20 1,200 12,000 12,000
4 100 1,200 2,400 2,400

FleX

Slim Fly

FIGURE 4. Bisection width comparison over the topologies with regards to the
number of routers.

BisectionWidth = 3NxNymin(Nx, Ny)/2

= NRmin(Nx, Ny)/2
(8)

In Slim Fly [4], the bisection width is approximately veri-
fied using the METIS [28] partitioner. The METIS partitioner
conducts graph partitioning based on a multi-level k-way
partitioning algorithm [29]. Although the graph partitioning
problem is NP-complete and the METIS partitioner does not
necessarily derive the optimal partition, it is used extensively
due to its simplicity and its ability to produce high-quality
partitions practically [28], [29]. Likewise, we verified the
obtained bisection width for 3-layer FleX using the METIS
[28] partitioner. Table 3 shows the bisection width results of
the partitioner on various 3-layer FleX configurations. We
could verify that the results of the bisection width from the
partitioner is identical to the value obtained from (8), though
it is slightly different when the smallest length of the axis is
an odd number and cannot be divided exactly.

In addition, in order to look at the true bandwidth on inter-
router connections, we first looked at the bisection width
according to the number of routers. Fig. 4 shows the bisection
width comparison over other topologies with regards to the
number of routers. Bisection widths for 3-level fat tree,
dragonfly and HyperX is derived analytically [1], [2], [5],
and bisection width for Slim Fly is obtained using the METIS
partitioner. FleX shows the higher bisection width than other
topologies, and it means that FleX can accommodate higher
amount of communication than the other topologies when all
cutting edges are used efficiently. As the bisection width of
FleX exceeds NR/2 load, FleX has detouring links, and it
can also have advantage on fault tolerance.
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FleX

FIGURE 5. Bisection width comparison over the topologies with regards to the
number of terminals.

TABLE 4. Bisection ratio comparison over the topologies with regards to the
scale of the system.

≈ N Fat tree Dragonfly HyperX Slim Fly FleX

1,000 0.250 0.187 0.278 0.326 0.300
2,000 0.250 0.182 0.269 0.354 0.286
5,000 0.250 0.179 0.265 0.345 0.278

10,000 0.250 0.177 0.262 0.328 0.273

To look at the true bandwidth in the actual environment
of constructing the topology, we also looked at the bisection
width according to the number of terminals over topologies.
The concentration (p) for each topology was configured to
have a full global bandwidth as described earlier in Section
III-B, and the bisection width results with regards to the
number of terminals were shown in Fig. 5. Given the number
of terminals, the bisection width of FleX offers half of the
full bisection width (N/2), which is similar to HyperX and
dragonfly.

As a further analysis, we also observe the bisection ratio
(i.e., bisection width divided by the total inter-router width).
The bisection ratio indicates how much the endurable load
(i.e., bisection width) is distributed to the whole network,
which can represent the balance between local (non-bisection
links) and global (bisection links) connections of the net-
work, not the performance of the network. As shown in
Table 4, FleX shows similar bisection ratio to HyperX,
which shows the balanced position between Slim Fly (high
bisection ratio) and dragonfly (low bisection ratio). However,
different from HyperX, FleX does not contain any intra-layer
links, and only contains inter-layer links, while maintaining
the low diameter. Accordingly, unlike HyperX, which can of-
ten require to accommodate both inter-dimensional and intra-
dimensional loads in a certain link, it is more advantageous
for FleX to evenly distribute loads to the various links by
providing much more diverse routing candidates. The more
detailed descriptions about routing in FleX is addressed in
Section III-C.

TABLE 5. Fault tolerance of topologies over various network size

≈ N Fat tree Dragonfly HyperX Slim Fly FleX

500 45% 50% 70% 60% 70%
1,000 45% 55% 75% - 75%
2,000 55% 60% 80% 70% 80%
5,000 60% 65% 80% 70% 80%
10,000 65% 65% 80% 75% 85%

4) Fault Tolerance
To analyze the fault tolerance performance of the proposed
topology network, we measured how many links can be
removed randomly without disconnecting the entire network.
We gave random failure of links with 5% increments and
observed whether the network is disconnected or not. Table 5
shows the maximum number of links that can be removed
without disconnecting the networks on various network sizes
and topologies. We conducted 100 iterations for each cases
and observed the maximum link failure that can endure
disconnection with more than half of trials. FleX is shown to
endure the higher link failure than other topologies (near 5%
enhancement to HyperX with similar cost), and can endure
higher link failure for the more number of terminals (N ) as it
has various detouring links by structural characteristics.

C. STOCHASTIC LOAD BALANCING SCHEMES WITH
ROUTING ON FLEX
In this section, we firstly introduce the minimal routing
scheme determining the forwarding path of injected packets
for 3-layer FleX. As FleX can provide various detouring
paths, we also propose a stochastic load balancing scheme
that can evenly distribute input traffic load to the such various
paths according to the congestion status of each path. We
consider routing from a source router vs = (xs, ys, zs) to
a destination router vd = (xd, yd, zd), and assume that both
Nx and Ny is greater than or equal to 3.

1) Minimal Routing
The minimal routing scheme for the 3-layer FleX is based
on the dimension order routing algorithm which is used in
the multi-dimensional networks such as mesh or hypercube.
However, as each router is not directly connected to the
routers that have same x and y axis value, but have different z
value, dimension order routing can not be directly applied to
the FleX network. Therefore, we introduce a minimal routing
scheme for FleX network, and it can be briefly described in
three main steps:

• Step 1: If xs = xd and ys = yd, route to the router that
has different value on one of x or y axis and is on the
other neighboring layer.

• Step 2: If xs ̸= xd and ys ̸= yd, route to the router that
has same y-axis value with the destination router and is
on the other neighboring layer.

• Step 3: Either xs ̸= xd or ys ̸= yd, if only one of them
is satisfied, route directly to the destination when zs ̸=
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zd, otherwise route to the router that has the other value
on different x or y axis and is on the other neighboring
layer.

For the further detail, Algorithm 1 describes how to route
to the minimal path for all possible cases that can occur in the
3-layer FleX network. In Algorithm 1, xintm, yintm, zintm
denotes each intermediate value on x,y,z axes for selecting
available intermediate routers to route.

When all the x, y, z-axes values of source and destination
router are different, routing is conducted to first align the y-
axis, then the x-axis and finally the z-axis. Different from the
dimension order routing, due to the structural characteristics
of the inter-layer connection in FleX, a constraint is added
that it should not be routed to the layer of the destination
router before the z-axis is finally aligned.

If the destination and source routers are in the same layer,
when the both x and y axis values are different, the y-axis
in the neighboring layer is aligned firstly, and then the x-
axis and the z-axis is aligned simultaneously to reach the
destination. In this case, looking at other possible routing
paths, there are 4 different minimal paths considering that
there are 2 cases for selecting the neighboring layer (previous
or next layer) and 2 cases for selecting the axis to align firstly
(x-axis or y-axis).

In case that the destination and source routers are on the
same layer, and only one of x or y axis value is the same, the
packet is routed to the any connected router that is on the axis
of different value in the neighboring layer firstly, and then
reaches to the destination directly. For this case, likewise,
looking at other possible minimal routing paths, there are 2
cases for selecting the neighboring layer, (Nx−2) or (Ny−2)
cases for selecting the connected routers that is on the axis
having different value, and 2(Nx− 2) or 2(Ny − 2) different
minimal paths in total.

When the destination and source routers are on the differ-
ent layers, and both x and y axis values are the same, the
packet is routed to the any connected router on the x-axis in
the neighboring layer that is different from layer of source
and destination firstly, and then reaches to the destination
directly. Looking for the other possible cases of minimal
path, there are (Nx−2) or (Ny−2) different minimal paths,
as there are (Nx − 2) or (Ny − 2) cases for selecting the
arbitrary connected router on x or y axis and only one layer
to choose.

If the destination and source routers are on the different
layers, and only one of x or y axis have different values, the
packet can reach to the destination directly, since the source
and destination routers are connected directly. Even though
a failure occurs in that connection, the packet can be routed
to the any connected router on the axis having different value
in the neighboring layer that is different from layer of source
and destination firstly, and then can reach to the destination
with total traveling distance 2. There are (Nx − 2) or (Ny −
2) different detouring paths that have distance 2, and these
detouring path does not have influence on overall diameter of
the network.

Algorithm 1: Minimal routing algorithm for 3-layer
FleX interconnection network.
source router: vs = (xs, ys, zs)
destination router: vd = (xd, yd, zd)
current routed node: vc = (xc, yc, zc)
vc ← vs
while (vc = vd) do

if (zc = zd) then
if (xc = xd) then

select one yintm on ∀yintm ∈ Y
s.t. yintm ̸= yc and yintm ̸= yd;

vc ← (xc, yintm, (zc +Nz − 1) mod Nz)
else if (yc = yd) then

select one xintm on ∀xintm ∈ X
s.t. xintm ̸= xc and xintm ̸= xd;

vc ← (xintm, yc, (zc +Nz − 1) mod Nz)
else

vc ← (xc, yd, (zc +Nz − 1) mod Nz)

else
if ((xc = xd) and (yc = yd)) then

select one xintm on ∀xintm ∈ X
s.t. xintm ̸= xc and xintm ̸= xd;

select one zintm on ∀zintm ∈ Z
s.t. zintm ̸= zc and zintm ̸= zd;

vc ← (xintm, yd, zintm)
else if ((xc = xd) or (yc = yd)) then

vc ← (xd, yd, zd)
else

select one zintm on ∀zintm ∈ Z
s.t. zintm ̸= zc and zintm ̸= zd;

vc ← (xc, yd, zintm)

Therefore, as we looked all possible cases on minimal
routing, FleX can be robust to the link failure, since there are
several detouring paths with keeping diameter 2. In addition,
it can be expected to use the network efficiently, if we use the
various detouring minimal paths according to the load.

2) Stochastic Load Balanced Routing
In order to highly utilize various detouring paths (minimal or
non-minimal) on FleX practically, we propose a stochastic
Load Balanced Routing (LBR) algorithm. LBR stochasti-
cally selects a path to route from the source to the destination
by modeling the probability to distribute the flits based on the
quantitative loads of several candidate paths. The final goal of
LBR is identical to those of other adaptive routing schemes,
such as UGAL [8], which aims to route each flit to minimize
congestion throughout the whole network where the finite
numbers of both minimal and non-minimal candidate paths
are predefined. Specifically, the goal of LBR targets is evenly
to distribute the input loads to all predefined candidate paths
in a stochastic manner by quantifying the load of each path
based on the queue length information of each router.

Let G = (V,E) be a graph corresponding to the given
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interconnection network, with the set of nodes V and the
set of edges E. Here, let P (G) be the set of all the paths
established by G. The length of a path p ∈ P is defined by
the number of edges in p, denoted by |p|. If a source node
vs and a destination node vd are a pair of vertices in a graph
G = (V,E), we represent a minimal path p∗ from vs to vd
satisfying the length of p∗ is not larger than that of any other
paths in P (G), that is, |p∗| ≤ |p|, ∀p ∈ P (G). Since there
might be more than one minimal paths from source node vs
to the destination node vd, we can consider a function to
generate the set of minimal paths from vs to vd as follows.
A function f : V 2→2P (G) defined on the graph G=(V,E)
is the minimal path function, if for a pair of vertices (vs, vd)
in G, f(vs, vd) is a set of all the minimal paths from vs to vd.
Now, we also consider a non-minimal path p′ from vs to vd
which the length is larger than |p∗|, as the routing candidates
when packet is forwarded. A function g : V 2 → 2P (G)

defined by the graph G=(V,E) is given to the non-minimal
path function, if for a pair of vertices (vs, vd) in G, g(vs, vd)
is a set of all the non-minimal paths from vs to vd. In this
situation, let q : V → R defined on a graph G = (V,E)
be the real-valued function from a vertex in G to the queue
length of the packets to be processed by the node of the
corresponding interconnection network, then q is called by
the queue-length function. Also, for convenience, override
the function q from a path to the queue length of all channels
in the path, described as q(p) =

∑
v∈p q(v). The queue

occupancy of local and global channels in the interconnection
indicate how much data traffic has been congested.

In LBR environment, we assume that there are N minimal
paths and M non-minimal paths from source to destination.
In practical, non-minimal paths can be determined through
Valiant random routing (VAL) [30]. The minimal paths have
the same hop count n = |p∗| from source to destination,
while non-minimal paths can formulate mi = |p′i|. The
procedure of updating forwarding rule in interval T can be
described as follows. Assume that the source node generates
λs packets per a second, and the queue-length of each node is
updated by the time interval T seconds. Then, LBR stochas-
tically select a path to route from vs to vd as shown in the
following steps.

Step 1. Take minimal paths Pn = {p∗1, p∗2 · · · , p∗N} with
|Pn| = N and non-minimal paths Pnm =
{p′N+1, p

′
N+2, · · · , p′N+M}with |Pnm| =M for all

source to destination pairs (vs, vd).
Step 2. In Pn and Pnm remove busy path pk meeting the

following conditions which the congestion occurs
during T seconds

q(pk) ≥
qsT +

∑N+M
j=1 q(pj)

N+M
. (9)

Let P ′
n = {p∗1, · · · , p∗N ′} and P ′

nm =
{p′N ′+1, · · · , p′N ′+M ′} be a set of the minimal
and near-minimal paths without satisfying above
condition.

Step 3. Stochastically select the path pk ∈ P ′
n ∪ P ′

nm to
route with the probability αk, where

αk=
1

N ′+M ′ +

∑N ′+M ′

j=1 q(pj)

λsT (N ′+M ′)
− q(pk)

λsT
. (10)

After updating interval T , each source vs determines avail-
able routing paths including N minimal and M non-minimal
paths for all destination vd, and it also profiles the packet
injection rate λs. Then it excludes the paths that are expected
to congestion during the next interval using (9). This implies
that the current queue length q(pk) is higher than the average
queue length of q(pi),∀pi ∈ Pn ∪ Pnm during the next
interval. Finally according to every (vs, vd) the forwarding
probability of pk, αk can be obtained by maintaining the load
balancing of candidate paths if λs is constant during period
T .

Herein, the sum of forwarding probability (αk) among all
routable candidate paths (∀pk) is guaranteed to be 1, which
means that all packets can be distributed to the predefined
candidate paths as described in Lemma 1.

Lemma 1 (Load Distribution). For given all routable candi-
date paths (Pn and Pnm), all packets can be stochastically
distributed to each routable path with probability αk, which
satisfies following:

N+M∑
k=1

αk =
N ′+M ′∑
k=1

1

N ′+M ′ +

∑N ′+M ′

j=1 q(pj)

λsT (N ′+M ′)
− q(pk)

λsT

(11)

= 1 +

∑N ′+M ′

j=1 q(pj)

λsT
−

∑N ′+M ′

k=1 q(pk)

λsT
(12)

= 1. (13)

Moreover, if the number of packets (λsT ) accumulated
during updating interval T is sufficient that case for (9) does
not occur at the certain router, the packets are distributed to
make the expected queue length of each candidate path be
same as follows:

q(pk) + (λsT )αk (14)

= q(pk) + λsT

[
1

N +M
+

∑N+M
j=1 q(pj)

λsT (N +M)
− q(pk)

λsT

]
(15)

=
λsT +

∑N+M
j=1 q(pj)

N +M
, (16)

where (16) shows that expected queue length after stochas-
tically load balancing is same over all candidate paths ∀pk
(i.e., traffic load for each path becomes evenly).

The proposed routing scheme can dynamically forward
packets to candidate paths preserving the load balancing in
the interconnection. In addition, it can also be a feasible
routing solution with global queue information for a large-
scale system by controlling the time interval T .

Likewise, in order to verify the performance of the LBR
of global adaptive routing version in FleX network, we also
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FIGURE 6. (a) Obtained cost model for cable in terms of length. (b) Obtained cost model for router with respect to radix. (c) Comparison of the total cost for
constructing the network. (d) Comparison of the power consumption of routers in the network.

implemented the simulation, where 1 minimal was obtained
by the previously described minimal routing method and
the other 3 non-minimal path was obtained through VAL
[30]. Detailed evaluations and results are discussed in Section
IV-B.

IV. EVALUATION
In this section, FleX is evaluated in terms of its cost, power
and performance aspects over other topologies, and the re-
sults in each case are discussed. In addition, the cost and
performance of FleX settings on the various numbers of
layers are briefly evaluated and discussed.

A. COST AND POWER CONSUMPTION
In supercomputing or datacenter environments, the cost of
hardware for constructing the system and the energy con-
sumption cost account for more than 70% of the Total Cost of
Ownership (TCO) [31], [32]. Therefore, we mainly evaluated
the configuration cost and power consumption for FleX.
We compared results for FleX, dragonfly, 2-dimensional
HyperX, 3-level fat tree, and Slim Fly. Each topology is
configured to have a full global bandwidth, as fully described
in Section III-B.

1) Configuration Cost Model
To compare the costs of constructing the network over var-
ious topologies, we looked at the costs of the routers and
interconnection cables, which constitutes a large portion of
the overall network configuration. First of all, as the cost
of cable per unit bandwidth found to be proportional to the
length of the cable, as indicated in general studies [3], [4],
it can be modelled through linear regression. We assumed
the InfiniBand EDR environment, which is commonly used
in Top500 HPC systems [21], and selected the Mellanox
InfiniBand EDR 100Gbps active optical cable model. The
cost model for the cable in this case is obtained as f(x) =
0.1167x+4.3410 [$/Gbps] which can be shown in Fig. 6(a).
We used commercially available selling price data [33] to es-
tablish the cable cost model. The cost model for the Mellanox
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FIGURE 7. Physical layout for constructing FleX interconnection network.

IB FDR 56Gbps active optical cable was also obtained and
compared, as shown in Fig. 6(a).

In addition, we obtained the cost model for routers in the
same way. For the routers, the cost is proportional to the
radix. We selected the Mellanox EDR InfiniBand switch,
and the cost model for the router is derived as f(k) =
128k + 15029 [$] through linear regression. Likewise, the
cost model for the Mellanox IB FDR router was also obtained
and compared, as shown in Fig. 6(b).

To calculate the approximate cost of configuring the net-
work, we assumed that the routers and the terminals were
grouped in the same rack. All of the connections between
the routers and terminals were set to 1m, and the distance
between the two different racks was based on the Manhattan
distance, adding 2m overhead, as shown in [3].

To calculate the configuration cost of FleX, the physical
layout of FleX is applied in a naive fashion. As shown in
Fig. 7, each y-axis in each layer of FleX is firstly packaged
into one rack. The detailed layout was packaged first for each
y-axis of each layer of FleX. Next, the racks corresponding to
each layer are arranged in a row according to the x-axis order,
and the links are connected as presented in the FleX topology
description. The Manhattan distances on the x, y, and z axes
in all cases in the topology are applied to calculate the lengths
of the inter-router links.
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TABLE 6. Configurations of topologies for latency performance evaluation with their configuration cost and power consumption.

Fat tree Dragonfly HyperX Slim Fly FleX

Total terminals (N) 1,000 1,056 1,000 972 1,080
Total routers (NR) 300 264 100 162 108
Radix (k) 20 15 28 20 30
Total links 2,000 1,452 900 1,053 1,080
Total configuration cost [$] 6.88×106 5.16×106 2.75×106 3.48×106 3.05×106

Total power consumption [W] 14,336 11,088 7,840 8,618 9,072

For the other topologies, dragonfly, 3-level fat tree, and
Slim Fly were arranged with their respective packaging rules,
as described in [4], and 2-dimensional HyperX was also
arranged using its own packaging rule [2].

In these settings, the total network configuration cost for
each topology was calculated using the obtained cost model
of the cable and router as shown in Fig. 6(c).

As shown in Fig. 6(c), the cost of configuring the network
for FleX is lower than those of HyperX and dragonfly but
slightly higher than that of Slim Fly at the various total
terminal sizes (N ). In the InfiniBand EDR environment as
assumed here, the switch costs are much higher than the cable
costs. Accordingly, the fewer routers we use, the lower the
cost to construct the network.

To examine these results more closely, as shown in
Fig. 6(a) with regard to the cable cost, the cost per unit length
on the unit bandwidth decreased as the technology matured
from FDR to EDR, but the bandwidth grew to 56Gbps for
FDR and 100Gbps for EDR. On the other hand, for the router,
the cost per unit radix increased as the FDR evolved into
EDR, as shown in Fig. 6(b). However, the rate of increment
for the router cost with regard to the radix has decreased
over the years. For example, earlier researches [4] showed
that the gradient value of the obtained router cost model
for the Mellanox IB FDR10 router is 350.4, much higher
than the gradient value (=128) of the recent cost model for
the Mellanox IB EDR router. Due to these development
tendencies of interconnection hardware technology, it can be
inferred that using fewer cables and using fewer routers with
higher radix values would be more efficient with regard to
configuration costs.

Therefore, as shown in the topology-specific configura-
tions for constructing nearly 1,000 terminals with having
a nearly full global bandwidth (Table 6), FleX had nearly
1,000 links and used relatively few routers with a high radix
to result in a relatively low configuration cost. In Table 6,
as the concentration (p) of HyperX is set to 10 instead of
p = ⌊k/3⌋ = 9 in order to match the closest possible number
of terminals for a latency performance comparison, HyperX
showed a slightly lower configuration cost than FleX. Details
of latency performance results are covered in Section IV-B.

In addition, as shown in Fig. 15 (will be discussed in
Section IV-B), the configuration cost increases significantly
as the dimension of HyperX increases from 2 to 3, as 3D
HyperX has a higher configuration cost than dragonfly. How-
ever, for FleX, increasing the number of layers results in a

smaller increase in the configuration cost and can provide a
range of various configurations depending on the number of
layers without changing the radix.

2) Power Consumption Model
The power consumed by the interconnect system accounts for
a significant portion of that used by the overall computing
system [32], [34]. We assumed that each router port has
4 lanes consuming approximately 0.7 watts for each lane
individually, as shown in [32]. Fig. 6(d) shows the total power
consumption results of the routers over the topologies. The
power consumption by FleX is lower than those of 3-level
fat tree, Dragon fly but slightly higher than that by Slim
Fly. These results show that FleX is relatively more energy
efficient than the other topologies.

B. LATENCY PERFORMANCE
We evaluated the minimal routing and adaptive routing per-
formance outcomes with the Universal Globally Adaptive
Load-balanced (UGAL) [8] and LBR routing schemes on
the 3-layer FleX network. In UGAL routing, we consider
local version routing operated by selecting the path with
the smallest value upon multiplication of the local queue
length and the hop count for each packet, using only partial
router information among all routers in a path. We used
the Booksim [26] cycle accurate simulator, in which packets
are injected by the Bernoulli process in input-queued router
environments. This cycle accurate simulator is widely used
to evaluate latency performances of target interconnection
networks with the specific routing schemes, as has been
conducted in several studies [1], [2], [4], [22]–[25]. We added
the network configuration and routing function modules for
FleX in the simulator. We used single flit (flow control unit)
packets and set the router delay for credit processing such
that it used 2 cycles. The buffer size for each virtual channel
(VC) was set to 256, and the speedup of the internals of the
routers over the channel transmission rate was set to 2.

First, we evaluated the performance of FleX against other
topologies, with each topology having the configuration set-
tings shown in Table 6. For a fair comparison, we set each
topology with similar terminal size (N ) and evaluated the
latency performance of various routing methods in each
network on 10 different traffic patterns (random uniform, bit
complement, bit reversal, shuffle, transpose, hot spot, ran-
dom permutation, asymmetric, neighbor, and tornado). Each
topology was configured to have a full global bandwidth and
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FIGURE 8. Latency performance evaluation on (a) random uniform traffic, and (b) bit complement traffic pattern.

near 1,000 terminals in total. The 3-level fat tree used a struc-
ture of k = 20, p = 10, and dragonfly applied a = 2p = 2h,
p = 4 configuration. For HyperX, a 2-dimensional structure
with a network diameter of 2 is used; the size of each
dimension is set to 10, and the concentration is set as p = 10
to match both a nearly full global bandwidth (p = ⌊k/3⌋) and
nearly 1,000 terminals. In Slim Fly, q was set to 9 considering
the full global bandwidth structure with a network diameter
of 2 and nearly 1,000 terminals, and p was set to 6 and
decreased by 1 from the concentration (p=⌈k/3⌉=7) with the
full global bandwidth specified in [4] to have nearly 1,000
terminals among structures where the network radix (k-p)
is 13. 3-layer FlexbleX with a network diameter of 2 was
configured with Nx = Ny = 6, p = ⌊k/3⌋ = 10 for
a full global bandwidth. With regard to the configuration
cost considering the topologies, 3-level fat tree and dragonfly
show higher configuration costs, and 2-dimensional HyperX
and FleX show the lowest total cost, though only differing by
3% taking into account the difference in the total size of ter-
minals. HyperX shows a lower configuration cost compared
to FleX because the concentration of HyperX is increased by
1 from the full global bandwidth condition.

As the bit complement, bit reversal, shuffle, transpose
traffic patterns require the total number of terminals to be
exactly the power of 2 (1024 in this case), we disabled the
extra terminals, and the patterns for the missing terminals
were not given.

Fig. 8 shows the latency results with regards to the offered
load on each network, the routing method, and the traffic
pattern. In Fig. 8(a), packets are injected into each terminals
with a random uniform probability. FleX yields lower latency
and higher saturation throughput than Slim Fly and dragonfly,
with results similar to those of HyperX. It is clear that FleX
yields lower saturation throughput than fat tree and HyperX
with minimal routing and UGAL scheme because there are

certain paths for which packets go back to the previous layer
according to the destination with minimal routing. However,
FleX shows saturation throughput comparable to the results
of HyperX and 3-level fat tree using LBR to address this
overhead adaptively.

For the bit complement traffic patterns, FleX shows lower
latency and higher saturation throughput over dragonfly,
Slim Fly, and HyperX on each routing method, but it has
lower saturation throughput than 3-level fat tree, as shown in
Fig. 8(b). Although FleX incurs a lower cost for configuration
and consumes less power consumption than fat tree, Flex can
further endure an injection load of nearly 0.6 (flits/cycle)
with the help of evenly distributing to detouring paths by
LBR. However, as we set all detouring paths to non-minimal
paths for convenience of the implementation, the latencies
of UGAL and LBR increase slightly compared to that of the
minimal routing scheme. For the FleX network, as it contains
several minimal detouring paths, we can expect lower latency
also with UGAL and LBR schemes.

In the bit reversal traffic patterns, as shown in Fig. 9(a)
at next page, FleX achieves the lowest latency, similar to
HyperX, and higher saturation throughput than Slim fly.
Analogous to random uniform packets, FleX yields lower
saturation throughput due to the doubled congestion of the
paths that go back to the previous layer and go forward to
the next layer with minimal routing. However, with adaptive
routing considering this overhead, as in the UGAL and LBR
cases, FleX achieves higher saturation throughput than drag-
onfly, HyperX, nearly matching that of the expensive fat tree
network.

With regard to the shuffle traffic patterns (Fig. 9(b)), al-
though FleX yields lower saturation throughput than fat tree
with minimal routing, for the UGAL and LBR cases, by
distributing traffics to various detouring paths adaptively, it
achieves higher saturation throughput than the other intercon-
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FIGURE 9. Latency performance evaluation on (a) bit reversal traffic, (b) shuffle traffic, (c) transpose traffic, and (d) hotspot traffic pattern.

nection networks, and the lowest latency, similar to HyperX.
In Fig. 9(c), dragonfly shows the lowest latency with mini-

mal routing and UGAL routing. Unlike the other interconnec-
tion networks, dragonfly has p = 4 with 8 routers per group
and has 1,024 terminals in total. Therefore, the destination
terminal of each source terminal is regularly aligned (as the
index of each source increases by 1, the destination index in-
creases by 32, which corresponds to the number of terminals
in one group), resulting in fewer inter-router traffic overlaps
compared to the other networks and lower latency. In the case
of UGAL on dragonfly, as each router routes packets with
local judging, unnecessary routing on a non-minimal path
can occur, resulting in higher latency and lower saturation
throughput than those with minimal routing on dragonfly.
FleX shows higher saturation throughput than Slim Fly and
HyperX and shows the second lowest latency outcome, simi-
lar to HyperX with the minimal routing scheme. Likewise,

with the synergy gained by containing various detouring
paths in FleX and evenly distributing the traffic load by LBR,
FleX can extend the saturation throughput in the LBR scheme
considerably.

For the hot spot traffic pattern, as shown in Fig. 9(d),
FleX has the lowest latency with HyperX and Slim Fly until
encountering saturation throughput.

In the random permutation traffic patterns, FleX shows the
lowest latency performance, similar to HyperX, as shown
in Fig. 10(a) at next page. Except for fat tree, which is
the most expensive network, the other networks can only
accommodate an injected flit rate of lower than 0.4 flits/cycle
with minimal routing and UGAL. However, with the help of
the various balanced detouring paths in FleX and the evenly
load distributing scheme, FleX highly extends the saturation
throughput, close to the result of fat tree when applying the
LBR scheme.
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FIGURE 10. Latency performance evaluation on (a) random permutation traffic, (b) asymmetric traffic, (c) neighbor traffic, and (d) tornado traffic pattern.

The results with asymmetric traffic patterns also show
similar trends, as shown in Fig. 10(b). In this traffic pattern,
HyperX shows higher saturation throughput than Flex on
UGAL. Nevertheless, by fully utilizing the balanced detour-
ing paths in Flex through the use of the LBR scheme, FleX
can extend the saturation throughput further, similarly to the
fat tree network, while only incurring close to half of the
configuration cost of fat tree.

For the neighbor (Fig. 10(c)) and tornado (Fig. 10(d))
traffic patterns, the results show similar aspects to each other.
FleX shows the lowest latency performance, similar to Hy-
perX, on each routing scheme, and the saturation throughput
of FleX on the LBR scheme is largely expanded compared
to the results of dragonfly, Slim Fly and HyperX. However,
as the neighbor and tornado traffic patterns mainly generate
local communications in the dimension of the network radix,
fat tree, which has a huge number of links over local com-

munications in each dimension, inevitably shows the highest
saturation throughput, while the other networks wither fewer
links cannot overcome the structural limitations in such traf-
fic patterns showing the low saturation throughput.

The results overall show that FleX has lower latency than
the 3-level fat tree, which shows relatively similar perfor-
mance regardless of the traffic pattern. FleX can also achieve
higher saturation throughput than HyperX, dragonfly, and
Slim Fly by applying LBR scheme to distribute the input
loads evenly to the various balanced detouring paths in Flex.
As LBR allows non-minimal paths to be candidate routing
paths, the evaluation results show that LBR sacrifices latency
performance over minimal routing (about 16% increase),
whereas LBR largely expands the saturation throughput
(nearly ×2 improvement over minimal routing).

In addition, Fig. 11 shows a hop count histogram of
packets in 3-layer FleX topology with minimal routing. In the

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3163542, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 1 2 3 4 5 6 7 8 9 10
Hop counts

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f p
ac

ke
ts

 (%
)

FIGURE 11. Histogram for hop count of packets at
3-layer FleX topology with minimal routing.
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FIGURE 12. Latency performance on the next
group (layer) traffic pattern in FleX and dragonfly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Injected flit rate avg (flits/cycle)

0

10

20

30

40

50

60

N
et

w
or

k 
la

te
nc

y 
av

g 
(c

yc
le

s)

FleX (Min hop)
Dragonfly (Min hop)
Slim Fly (Min hop)
Fat tree (NCA)
HyperX (Min hop)
FleX (UGAL)
Dragonfly (UGAL)
Fat tree (ANCA)
HyperX (UGAL)
FleX (LBR)

FIGURE 13. Latency performance comparison for
the higher cost configuration of FleX.

figure, we can verify that the network meets the diameter-2 at
maximum 3 hop count, with this low-diameter characteristic
resulting in low latency performance. Moreover, we can
verify that the proposed minimal routing algorithm for FleX
routes the packets along the minimal path correctly.

We also compared FleX on the worst case traffic pattern
of dragonfly, as shown in Fig. 12. Although it is unfair
to compare FleX, for which all links are global links, to
dragonfly, where a small percentage of links are global links,
we attempted to verify the advantages of constructing all
links as global links in FleX. In the worst case traffic pattern
of dragonfly, each router sends packets only to the routers
in the next group. As the layer in FleX has concept similar
to that of a group in dragonfly, we applied a traffic pattern
in which each router sends packets only to the next layer
to FleX. With only the inter-layer connections and not intra-
layer connections in which the layer corresponds to the group
in dragonfly, we find that FleX achieves lower latency and
higher throughput on the worst case traffic pattern (next
group or layer traffic pattern).

In order to demonstrate the configuration flexibility of
FleX, we also set a new configuration of a FleX network with
a higher cost than the configuration in Table 6 and compared
the latency outcomes with those of other topologies with bit
complement traffic, which showed the worst performance
in the previous configuration. The newly configured FleX
network has a total of 960 terminals, 192 routers with 33
radix, and 2,688 links between each router, with a total
configuration costs of 5.49×106$ and power consumption
of 17,740W. As shown in Fig. 13, there is a performance
enhancement compared to the previous FleX configuration.
FleX has the lowest latency and higher saturation throughput
than dragonfly, Slim Fly, and HyperX. For LBR scheme,
FleX achieves higher saturation throughput than the 3-level
fat tree, which still has a higher configuration cost.

Finally, in order to observe the impact of the updating
period (T ) for LBR on the network, we evaluated the latency
performances on the various values of T where LBR is
applied to Flex in the random uniform traffic pattern. As
shown in Fig. 14, the results show that the average network
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FIGURE 14. Latency performance on the various settings of the updating
period (T ) for LBR at FleX.

latency increases and the saturation throughput decreases
as the updating period (T ) grows up. As the status of the
queue length for each port dynamically changes in the ran-
dom traffic, the derived load balancing policy from LBR
can lose its optimality as the time goes on from the recent
updated time, which can contribute to the degradation on
the latency and saturation throughput performance under the
longer routing table updating period. Accordingly, setting the
updating period (T ) for LBR as small as possible can result
in the highest latency performance. However, in the practical
HPC system, the available minimum updating period (T ) for
LBR is limited depending on the hardware specifications,
the total scale of the system, the implementational meth-
ods of interconnection management software, etc. Therefore,
preliminary profiling about the available updating period is
required to be conducted before operating the actual system
for expecting the best performance via LBR.

C. OVER 3-LAYER IN FLEX

In this section, we evaluate cost and performance while
increasing the number of layers in FleX to more than 3 to
explore the impact of changing the number of layers on the
cost and performance, as this is one of the flexibility factors
in FleX, which can increase the network size under limited
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FIGURE 15. Cost of configuring FleX over the
number of layers.
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FIGURE 16. Average hop counts in FleX over the
number of layers comparing to HyperX 2D and 3D.
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FIGURE 17. Latency performance of FleX over the
number of layers.

radix conditions. We firstly calculated the total configura-
tion cost of FleX with the various numbers of layers and
compared these outcomes to 2-dimensional HyperX and 3-
dimensional HyperX, as shown in Fig. 15. The cost calcu-
lation models and packaging rule for each topology were
applied identically to the methods used earlier in Section
IV-A. As shown in Fig. 15, the configuration cost of FleX
increases by a smaller margin compared to HyperX (2D to
3D) as the number of layers (i.e., network dimension of FleX)
is increased, and the configuration costs for FleX with 4~7
layers show variations in the range between the cost of 3-
layer FleX and 3-dimensional HyperX. Moreover, network
diameters of FleX with 4~7 layers are all 3.

For a performance comparison, FleX is configured to have
structures such that the number of layers is increased from
3 to 7 while Nx = Ny = 6 is fixed. HyperX is set to have
2-dimensional and 3-dimensional structures with dimension
sizes of 6 in each dimension. To examine the tendency toward
increased numbers of layers in FleX, the concentration (p)
was unified to p = 1 on all compared structures. With these
topology settings, we evaluated the results of minimal routing
in the random uniform traffic pattern using the Booksim [26]
simulator, as described in Section IV-B.

Fig. 16 shows the average hop count results at the offered
load of 0.5 flits/cycle for each topology structure. As the
number of layers increases in FleX, the ratio of the minimal
routing path with a distance of 3 increases in the structure
where only links between adjacent layers are established,
resulting in an increased average hop count. In the case of
4-layer structure, the hop count exceeds that of the 5-layer
structure, as the ratio of the minimum path with a distance
of 3 in total was higher than that of the 5-layer structure due
to the structural characteristics. In addition, FleX with 4∼7
layers shows the average hop count variations between those
of 3-layer FleX with a network diameter of 2 and 3D HyperX
with a network diameter of 3, demonstrating that FleX can
provide the flexibility on increasing the network size while
maintaining the radix value.

Fig. 17 shows the latency performance for each topology
structure. These results show a tendency similar to that in
Fig. 16, and as the number of layers in FleX increases, the

latency increases with an increase in the average hop count.
Similarly, in the 4-layer case, the latency of 4-layer FleX
exceeds that of 5-layer FleX, as the ratio of the minimal
path with a distance of 3 is larger in the 4-layer structure.
In addition, for 3-dimensional HyperX, the network size is
identical to that of 6-layer FleX, but there are fewer inter-
router links, showing higher latency and a higher average
hop count. On the other hand, for 2-dimensional HyperX,
as the network size is smaller than that of 3-layer FleX,
2-dimensional HyperX shows lower latency and a lower
average hop count than 3-layer FleX.

These results show that FleX can provide more flexible
options when configuring an interconnection network by
offering an adjustable number of layers. Specifically, it is
shown that FleX can expand the network size of existing
systems by easily adding layers without expanding the radix,
with only small latency degradation.

V. CONCLUSION
We introduced FleX topology, which can be configured
easily, is cost-effective, and can produce low latency per-
formance with a low-diameter structure. By removing all
connections within the layers and connecting only the neigh-
boring layers as a ring, a low-diameter network could be
established in a 3-layer structure. In addition, due to the
absence of comlex constraints for configuring the network
in FleX, several variations of configurations can be created
easily to find suitable configurations for a given fixed budget.

In addition, we analyzed the various structural properties
of FleX and proposed a minimal routing algorithm for the
proposed topology. The proposed topology was evaluated in
terms of the configuration cost and power consumption. The
evaluation results showed that FleX is more efficient in terms
of cost and power consumption compared to other topologies.

We also evaluated the latency performance of the min-
imal, UGAL, and LBR routing in the proposed topology
through a cycle accurate simulator. The latency performance
results showed that the FleX achieves consistent performance
against various traffic patterns as well as lower latency and
higher saturation throughput at the same cost, as all links in
FleX have a symmetrical structure that allows them to have
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the same load. Moreover, we identified that the proposed
minimal routing algorithms works correctly by examining a
hop count histogram of the packets, also finding that LBR
can largely extends the saturation throughput in FleX though
it sacrifices latency in small portion.

Finally, by conducting a brief evaluation of the cost and
performance with regard to the number of layers, we verified
that FleX can provide a various alternatives to suit a range of
various configuration environments by adjusting the number
of layers, which is a key flexibility factor of FleX. As future
work, it is expected to find a more efficient way to use the
high bisection width of FleX by adaptively selecting the
multiple minimal paths available in FleX according to the
load.

In conclusion, FleX is demonstrated to be highly applica-
ble, as it shows low latency performance and incurs only a
low cost when configuring or managing an interconnection
network. Being synergized with LBR, FleX can expand
its saturation throughput further while only sacrificing the
latency slightly. Moreover, FleX offers a strong advantage
in that it can flexibly changes the scale of the physical
interconnect system by easily adding/removing the layers. As
FleX has only the inter-layer links on neighboring layers, it
is easy to add or remove the layers physically. Therefore, it
can be easily and rapidly coped with changing the scale of
the HPC system (a case in which expanding the scale would
be predominant).

However, as FleX does not contain any intra-layer links,
Flex has a structural weakness in how it accommodates
local traffic patterns, which is a common limitation of other
cost-effective networks as well (e.g., dragonfly, Slim Fly,
HyperX). Our LBR shows that it can mitigate this limitation
but the limitation also cannot be largely resolved in certain
traffic patterns, such as neighbor or tornado traffic patterns.
The development of topological solutions or other routing
schemes that can endure such local traffic patterns are re-
mained as future works.
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