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ABSTRACT The data analysis platform used in smart grid is important to provide more accurate data
validation and advanced power services. Recently, the researches based on deep neural network have been
increasing in data analytic platforms to address various problems using artificial intelligence. The main
problem to analyze multiple meter data based on deep learning is that the data distribution is varying
according to both different client and time flow. Some studies, such as continual learning, are effective
in dynamically fluctuating data distributions, but require additional complex computational procedures that
make it difficult to construct an online learning system for processing data streams. In this paper, we proposed
a hybrid deep learning scheduling algorithm to improve accuracy and accelerate learning performance in
a multiple smart meter source environment, of which biased data feature varies dynamically. We use a
simple analysis method, cosine similarity, to reduce computation complexity. By analyzing the frequency
distribution of cosine similarity, a model recognizes that biased data feature of power consumption patterns.
The skewed data distribution is reduced by using the zero skewness property of of an uniform distribution.
The diversity of memory buffer was increased by update strategy which maximizes variance of pattern.
When scheduling an online and offline gradient in different computational complexity, the proposed model
reduces processing time by selectively calculating gradient considering the degree of data feature transition.
To verify the performance of the proposed algorithm, we conducted three experiments with AMI stream data
on the proposed method and the existing method of online learning. The experimental results demonstrate
that our method can achieve reasonable performance in terms of trade-off between accuracy and processing
time.

INDEX TERMS Deep learning scheduling, online learning, load forecasting, energy data stream processing.

I. INTRODUCTION
With the rapid growth of global energy demand and the
emergence of new technologies, Advanced Metering Infras-
tructure (AMI) consisting of automatic meters, bi-directional
communication and a data repository, have been developed
for energy-efficiency and bi-directional resource manage-
ment in worldwide. In actual case, Korea Electric Power Cor-
poration (KEPCO) has been supplying AMI since 2013 and
installed 7.4 million AMI in 2018 [1]. KEPCO is now plan-
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ning to install approximately 22 million AMI units in 2020.
Various information containing time series power data col-
lected from smart meters is transmitted to the data cen-
ter of power corporation at every 15 minute or one hour.
To validate, estimate and edit the enormous data stream,
the power utility company builds the Meter Data Manage-
ment System (MDMS) which refers to software of data cen-
ter that performs data storage and management to import,
validate, edit enormous quantities of data for billing or data
analysis.

To implement data analysis based on deep learning or
learning-based model in data stream such as a AMI meter
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data, it is required to keep training on continuously incoming
data stream according to [2], [3]. The time-variant data stream
is different from the general big data or structured data. In cur-
rent studies on both machine learning and deep learning,
the learning-based model which is trained by historical data
shows performance degradation on future time-series data [4]
due to non-stationary feature, particularly named as a concept
drift. The concept drift [5] means that the statistical properties
of the target variable, which the model is trying to predict,
change over time in unforeseen ways. This causes problems
because the predictions become inaccurate as time passes.
Reminding the necessity of incorporating new information
from a data stream, Incremental Learning or Online Learning
[6], [7] is a common method to train a learning-based model
expanding the knowledge of existing model by incoming
input data containing untrained feature. When incrementally
learning model with a small batch size, the incremental
learning scheme proposed how to incrementally train without
loss of model performance by using incremental learning
algorithm-based dynamic learning strategy and mathematical
formula.

When multiple meter data of each customer is submit-
ted to meter data management system, most of researches
about deep learning system have studied multi-agent model
for multi-client data according to [8]. This system is accu-
rate, however it requires more resources than single agent.
Therefore, considering resources and hardware limitations,
it is obvious that the single model is more adequate than
the multi-agent for the online learning system. However,
there are the problems when operating single model based
online learning on the environment of multi-AMI and big data
stream. The main reason of low performance of incremental
learning is biased data distribution problem according to each
customer. This is also named as non-iid data in [9]. In real
case, when multi-AMI is continuously incoming, the AMI
meter data distribution representing consumption pattern is
dynamically changed due to totally different consumption
pattern among multiple AMI users. Considering multiple
AMI users, incoming stream data can have skewed and dra-
matically different distribution. For a set of streams separated
by multiple AMI users of different colors, the consumption
pattern frequency distribution, measured using cosine sim-
ilarity, has a different biased distribution when comparing
initial pattern.

To apply online learning for multi user data stream in
physical system, efficient resource and learning scheduling
are basically required. Therefore, this paper focuses on devel-
oping hybrid deep learning scheduling solution for feasible
online learning system.

The main contributions of this paper are as follows:
• We proposed a hybrid deep learning scheduling algo-
rithm to enhance and accelerate learning performance in
a multi-AMI ID environment where the distribution of
biased data varies dynamically.

• We first analyze the basis vector to establish frequency
distribution based on cosine similarity for recognizing

concept drift. We focus on a general feature of power
consumption data for AMI data feature analysis.

• We then consider the accuracy performance of deep
learning model using the variety of historical data to
maintain generality of centralized model on cluster side.

• According to scheduling algorithm, we design the
learning system for a given edge-cloud computing.
We present the system model in multi-client AMI data
stream environment.

• To demonstrate that our approach can achieve objective
performance, we implement valid experiment. Then,
we discuss results in terms of performance trade-offs
among related algorithms.

The remaining section of this paper is as follows.
We describe useful conventional methods corresponding
challenges in Section II. Then, the proposed system model
is described in edge-cloud environment in Section III. After
designing system model, we focus on the proposed hybrid
deep learning scheduling scheme with detailed derivations in
Section IV. Performance evaluation in Section V is dedicated
to show the performance of proposed system and discuss the
trade-offs. Finally, Section VI summarizes the paper with
conclusions and future works.

II. PROBLEM DESCRIPTION FOR EFFICIENT LOAD
FORECASTING
In this section, we describe the existing online learn-
ing algorithm of previous research which optimizes the
learning-based model in continuously incoming data stream.
We describe both a simple analysis method based on cosine
similarity and method for representing discrete data distri-
bution. Then, we also describe the multi-AMI meter data
characteristics, in detail, considering the dynamically chang-
ing data distribution as time flows. Then, we address the
limitation of existing online learning algorithm, when applied
to the real-world data stream.

A. ONLINE DEEP LEARNING FOR STREAM DATA ANALYSIS
The data analysis based on deep learning is focusing on
generalize the model to represent data distribution including
observed data and unobserved data having similar character-
istics of the observed examples. However, there is still the
problem in non-stationary environment because the unob-
served data has no relation to observed data. In this environ-
ment, data stream analysis aims to extract principle feature or
original characteristics from a continuous or discrete stream
of information to infer the classes for the accurate classifier,
or the predictive value or missing value, which is continuous
stream, for the predictor or classifier.

Incremental learning is an ordinary learning scheme
[7], [10] to keep train models using incoming data
stream to extend the generalized information of a current
learning-based model, as shown in Figure 1. When continu-
ously learning adaptive model in a sequential data, the prob-
lem how to constantly train a learning-based model without
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FIGURE 1. An illustration of existing online learning system [7], [10] when
applying it on multiple AMI meter data stream.

loss of model performance on previous information is solved
with incrementally learning algorithm-based dynamic learn-
ing technology and mathematical formula. The main purpose
of incremental learning is that the new information is trained
to existing model without forgetting existing knowledge over
time. However, the existingmodel still show low performance
in rapidly varying data distribution in real-world environ-
ment.

To handle dynamically changing data characteristics, con-
tinual learning methods store small amounts of data at the
learning stage in limited memory that do not affect the sys-
tem, preserving the previous information only by incorporat-
ing the stored memory data into the learning as if it were
a human being in subsequent training. On limited memory
space, the experience replay algorithms [11], [12] consider-
ing the training strategy for the conditions under which the
number of classes of images is increasing, and the gradient
regularization algorithms [9], [13] was proposed to have a
positive effect on the model in which the previous data is
currently updated. In other ways, it continues to learn the
data generated by the productive model learned from the
previous information without separate memory space, and it
also learns the productive model simultaneously to preserve
the information in the current work [14]. However, continual
learning scheme requires additional complex computation
with reserved memory buffer.

B. DATA ANALYSIS BASED ON COSINE SIMILARITY FOR
ELECTRICITY
To measure the similarity among power consumption pat-
terns, the cosine similarity score is commonly used with
simple calculation between two vector indicating power con-
sumption pattern. The cosine similarity, which is used as a
score to measure the similarity of the pattern [15], is also used
as a similarity indicator for the AMI meter data [16], [17].

Therefore, the cosine similarity score between two power
consumption vector is defined as their dot product divided by
the product of their L2 norm, i.e. X ·Y

||X ||·||Y || as referred in [18].

C. FREQUENCY DISTRIBUTION TO EXPRESS DISCRETE
DATA STREAM DISTRIBUTION
According to reference [19], counting how many similar
data fall into each interval, the similarity histogram DSi =
{D1,D2, . . . ,Dj, . . . ,Dn} could express data distribution
with total count |Dj| and each histogram bins Dj is defined
as follows:

Dj = {x
p
i,k |x

p
i,k ∈ Ci} (1)

where stream set Si with time sequence i, similar data set Ci
based on K-means clustering. The referred journal paper [19]
emphasized that histogram definition, despite of simplicity,
covers all binned density estimators. Moreover, according to
[20], a histogram or a data frequency distribution can also
provide precise representations of the underlying true data
distribution. The reference denotes that the similar data is
searched by K-means clustering, however, K-means is iter-
ative method and NP-hard problem which causes the large
processing time.

D. ONLINE LEARNING IN MULTI-CLIENT AMI DATA
We conducted a preliminary analysis to confirm the effect
of the distribution of the transmitted data actually changed
dynamically in the context of the incremental multiple AMI
meters. To investigate how diverse the pattern of daily power
consumption in low-voltage was, the data sets were classified
using k-means as shown in Figure 2. The x-axis indicates
power consumption and the y-axis represents timestamp in
both (a) and (b). The subfigure (a) shows the entire descrip-
tion of dataset, and (b) presents the k-means clustering results
when k is set to 10. Focusing on the clustering results, the data
is not precisely separated however this result is a rebuttal of
the varying distribution of data. We then applied incremental
learning techniques to these real-world datasets, with data
streams transmitted to the data center sequentially and with
the condition of only-once observation consistent with [9].
Figure 3 shows test results with average root mean square
error (ARMSE) of existing online learning after training
each stream set. We note that despite applying incremental
learning techniques, the error is not reduced.

In order to resolve these problems of previous work,
we propose a hybrid online learning scheduling using cosine
similarity to utilize edge and cloud computing. Utilizing
cosine similarity and frequency distribution based on it,
the proposed approach estimates the underlying characteris-
tics of incoming data stream and handles offline experience
buffer. Based on it, leveraging recognized data distribution,
the proposed method allocates gradient computation task to
edge and cloud computing, whereas the others only concern
centralized computing resources. Below we describe our pro-
posed approach in details.
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FIGURE 2. The description of Kepco dataset for daily power consumption, and k-means result when k is 10. A line in the each figure shows a daily
low-voltage power consumption pattern. The results indicate that the data is hard to be clustered.

FIGURE 3. The fluctuating accuracy problem on dynamically varying data
distribution in existing online learning [7], [10].

III. SYSTEM MODEL IN EDGE-CLOUD ENVIRONMENT
Assuming a power system that transmits large-scale AMI
time series power consumption data over the network,
the data stream is preprocessed from edge servers to enable
deep running learning processing. The pre-processed train-
ing data stream has customer data randomly mixed, but the
time order is sequentially arranged. The proposed edge-cloud
system transmits and receives the required data streams over
the network and in-memory, but does not store data in the
file system as described in Figure 4. The proposed system in
which edge and cloud cooperate trains the neural network for
continually pre-processed data stream by optimizing model
parameter to reduce loss.

A. PREPROCESSOR IN EDGE
First, the raw data stream is received in edge server which
implements preprocessing data as described in Figure 4. The
time-series power data is denoted as a real powerwm(t) where
t is a given time and m is a smart meter identifier. To train a
neural network, the data of each smart meter is collected into
queue in fixed small size p which is enough to learn spatial
and temporal data characteristic. Therefore, the small data
chunk of each smart meter is expressed by xi,m following:

xi,m(t) = {wm(t),wm(t + 1), . . .wm(t + p)} (2)

where i is a time sequence. This small data chunk is a trainable
atomic input unit and size p is directly related to deep learning

model. Additionally, The predictive target is given by yi,m.
In proposed system, yi,m is same as wm(t + p + 1) because
our target application is short-term power consumption pre-
diction. The training dataset Ti which proceeds feed-forward
in neural network at time sequence i consists of N pairs of
data (xi,m, yi,m). TheN value is small enough to trainmodel in
real-time. The preprocessor forwards training dataset to both
edge and cloud server as described in Figure 4.

B. INTER-NODE TRANSCEIVER
In proposed system, edge and cloud server need to com-
municate with each other during training procedure. The
inter-node transceiver follows binary protocols for gradient
data serialization and de-serialization to deliver data through
interconnected network. We set a transceiver model func-
tion Comm(g, Src) where g is a gradient, Src is a gradient
transmitter location Edge or Cloud . When call this function,
the gradient values are synchronized according to a gradient
g calculated from Src. We describe the data flow for gradient
information by blue line in Figure 4. Therefore, the edge and
cloud computing can implement parallel processing before
communication procedure.

C. OFFLINE EXPERIENCE BUFFER
In cloud node, a historical data is stored in a limited sized
memory to enhance the accuracy performance of deep neural
network in multi-AMI data stream environment. This mem-
ory named as the offline experience bufferBi at time sequence
i has limited size n × p where n is a number of preserved
vectors, and p is a same value of Equation (2).

D. COSINE SIMILARITY WITH CRITERION VECTOR AND
FREQUENCY DISTRIBUTION
We particularly define the cosine similarity score between
AMI meter data with criterion vector Ev to resolve similarity
well as follows:

scoreEv(x
p) = cos(θEv,xp ) =

Ev · xp

||Ev|| · ||xp||
(3)
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FIGURE 4. An illustration of the edge-cloud environment for the proposed system. The black line shows data flow and the blue line means
bidirectional gradient communication path. The preprocessed data stream is described in the bottom-left of the illustration.

In terms of physical meaning, we used E1 vector as a crite-
rion vector in a p-dimensional space to express this evenly
because all of electricity consumption is positive. We will
discuss the other criterion vector later with the results of the
experiment in Section V.

In addition, the cosine similarity frequency distribution
is defined for measuring distribution plots based on cosine
similarity. Considering the width ε of cosine similarity and
faster processing histogram than reference [19] using K-
means, we define the cosine similarity frequency distribution
function D(i, ε) = {D1,D2, . . . ,Dn} where time sequence i,
cosine similarity score setCi cmin = minCi, cmax = max(Ci),
and range width ε = cmax − cmin. With function D(i, ε),
the cosine similarity histogram buffer is defined as illustrated
in Equation (4) and Figure 5:

Dj = {x
p
i,k |cmin + (j− 1) ∗

ε

n
≤ ck ≤ cmin + j ∗

ε

n
} (4)

FIGURE 5. The mathematical description of criterion vector Ev with cmax
and cmin in Equation (3) and cosine similarity histogram buffer Dj with
inputs xp

i,k expressed in dots in Equation (4).

IV. HYBRID DEEP LEARNING SCHEDULING SCHEME
The main objective of the proposed system that the scheduler
uses incoming stream set and experience buffer to perform
projected gradient calculations that require complex compu-
tations through cloud computing to recognize the data distri-
bution in phase 1. Based on this, there is phase 2 to update
the offline experience buffer with a set selection with a high
variance to create an uniform distribution set to address the
skewed distribution problem. Finally, it consists of phase 3,
which reduces processing time through a scheduling method
based on a different distribution chart.

To train deep learning model with high accuracy on both
previous and current data feature, a proposed scheduler
updates current deep learning model using online gradient
with low latency on edge computing when skewed distribu-
tion problem is not occurred. In other words, a large-scale
time-series power consumption data is transmitted to edge
server first and update deep learning model using current
gradient to reflect current feature as fast as possible. Further-
more, when skewed distribution transition is happened, pro-
posed scheduler processes three phases to calculate projected
gradient requiring high and complex computation using cloud
computing, such as MDMS.

A. PHASE 1 : RECOGNIZING COSINE SIMILARITY
FREQUENCY DISTRIBUTION
First, Phase-1 recognizes the cosine similarity score with
criterion vector to express the degree of similarity among
the power consumption because cosine similarity has a lin-
ear time complexity. Following cosine similarity score with
criterion vector in Euqation (3), the criterion vector is E1
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representing same distance from dimensional axis and well
describes the power consumption pattern of time-series AMI
meter data. After calculating cosine similarity score, a sched-
uler builds the cosine similarity frequency distribution D
using uniform sampling to signify the number of similar
consumption pattern according to cosine similarity score.
To recognize the cosine similarity distribution in both stream
set Si and offline buffer Bi−1 the scheduler concatenates both
stream data and build cosine similarity set Ci with criterion
vector E1 as follows:

Ci = {ck |ck = scoreE1(x
p
i,k )} (5)

where xpi,k ∈ Si∪Bi−1. As can be seen in Figure 6, considering
continuous domain of cosine similarity score, the scheduler
build histogram buffer Di using Equation (4), D(i, ε) where
cmax = max(Ci), cmin = min(Ci), and ε = cmax − cmin as
follows:

Dj = {x
p
i,k |cmin + (j− 1) ∗

ε

n
≤ ck ≤ cmin + j ∗

ε

n
} (6)

FIGURE 6. An illustration of histogram buffer D shown as a green bar
according to Equation (6). Each green bar length indicates the total
number of power consumption elements.

Figure 6 describes a bucket including similar power con-
sumption pattern xpi,Di and indicates the how many simi-
lar power consumption pattern. According to Equation (6),
the first subset includes a power consumption pattern with
cosine similarity cmin and the last subset includes a power
consumption pattern with cosine similarity cmax . According
to the histogram buffer Di, the total element number of
histogram buffer, denoted as |Di|, is a range of biased con-
sumption pattern in a frequency distribution based on cosine
similarity score.

B. PHASE 2 : UPDATING OFFLINE EXPERIENCE BUFFER
Second, Phase-2 decides to update the offline experience-
buffer using maximizing variance of a subset of the AMI
meter data for preserving various consumption patterns. First
of all, to reduce the skewness of cosine similarity frequency
distribution, a heuristic method which does not increase a
computational load is proposed with uniform distribution fea-
ture of which skewness is zero. Therefore, using the skewness
of uniform distribution equals 0, a power consumption pattern
xpj within subset Dj is selected to make uniform distributed
set U where xpj is randomly selected in uniform probability
distribution with Dj for diversity as follows in Equation (7):

U = {xp1 , x
p
2 , . . . , x

p
j , . . . , x

p
n } (7)

FIGURE 7. A description of the uniform distributed set U based on
Equation (7). The red box means a randomly selected power consumption
pattern xp

k,Dj
from a histogram buffer Dj .

where P(X = xpj ) is 1
|Dj|

. The random sampling from a
histogram buffer Dj uses the index k of power consumption
pattern xpk,Dj where 1 ≤ k ≤ |Dj|. Due to using discrete
frequency domain, a histogram buffer could not include any
power consumption pattern. Therefore, if there is no power
consumption pattern in some histogram buffer, then the pro-
posed scheduler neglect empty histogram buffer because it
means that there is no need to consider the power consump-
tion pattern corresponding cosine similarity score scope.
In Figure 7, the red box shows selected power consump-
tion pattern with random probability. Therefore, the green
bar denoting total count of power consumption pattern with
similar cosine similarity score shows transformation from
skewed distribution to uniform distributionwithout skewness.
Because of the uniformly distributed cosine similarity score
of power consumption pattern in reconstructed set, the uni-
form distributed set is named to reconstructed set U.

Now, the scheduler determine whether to update using
update policy maximizing variance for various representative
pattern of preserved buffer. Referred to bias-variance analysis
in previous paper [21], when a variance of the ensemble
is large, the data feature diversity of the ensemble is more
guaranteed than low variance. Therefore, we decide to update
when variance of U is larger than Bi−1 with buffer transition
indicator τ like bellow:

Bi = argmax
x∈{Bi−1,U}

(VAR(Cx)) (8)

where VAR(·) means a function calculating variance from a
set. In Equation (8), the cosine similarity set Cx indicates
that the cosine similarity score of x including both previous
experience buffer Bi−1 and U as an argument. Therefore,
new updated buffer is assigned by buffer or set having larger
variance than other.

Furthermore, when the updated experience buffer Bi is dif-
ferent from previous experience buffer Bi−1, it means that the
power consumption pattern is more divergent than previous.
Hence the scheduler designates the indicator τ of variance
transition as follows in Equation (9):

τ =

{
0 if Bi = Bi−1
1 otherwise

(9)
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The hybrid deep learning scheduler is a maximum variance
selective for various data representation.

C. PHASE 3 : REFLECTING OFFLINE INFORMATION WITH
HYBRID SCHEDULING
To update a deep learning model, a gradient should be cal-
culated as a vector reducing the predictive error on current
target data. However, as mentioned at Section II, the pro-
jected gradient requiring additional computation is necessary
to diminish the negative effect of skewed data distribution
transition. Therefore, Phase-3 calculates both current and
projected gradient using online and offline gradient. A deep
learning learner projects the offline gradient to current gra-
dient to reflect previous information of preserved data dis-
tribution. Using phase-2 transition indicator τ , the calculated
gradient is scheduled to eliminate the additional computation
for projected gradient.

To reflect current information into updated deep learning
modelMi, the proposed system calculates online gradient gon
using edge computing as follows:

gon =
∂l(Mi−1(Si), ti)

∂θi−1
(10)

where Mi−1 is a previous model, ∂l(·)
∂θi−1

is a partial differen-
tiation for a gradient vector denoting a direction decreasing
error of the predictive value, current stream set Si, and current
target ti. In Equation (10), the gradient gon, named as a online
gradient, implies the current information which has different
skewed data distribution from previous.

To reflect previous information into updated deep learning
model Mi, the proposed system calculates offline gradient
goff including previous information in cloud computing as
follows:

goff ,k =
∂l(Mi−1,Bk )

∂θi−1
(11)

where k ∈ N is less than i. Bi is a newly updated experience
buffer containing previous information. In Equation (11),
the gradient goff , named as a offline gradient, includes the
information of previous skewed data distribution.

Furthermore, to decrease negative effect between previ-
ous and current due to different skewed data distribution,
the proposed scheduler computes the projected gradient gproj
as referred in [9]. The projected gradient gproj can reflect the
previous information including different skewed data distri-
butions into deep learning model. Moreover, the projected
gradient is only computed when a skewed data distribution
is changed with a transition indicator τ , so, the proposed
scheduler can reduce the entire processing time.

To reduce the processing time and skewed data distribu-
tion hazard, the computed gradient in the proposed sched-
uler is different from the conventional learning system. The
adadelta optimizer computes gradient gi−1 as described in
Equation (12) and accumulates gradient as shown in Equa-
tion (13) with scheduled gradients as follows:

gi−1 = τgproj + (1− τ )gon (12)

E[g2]i−1 = γ ∗ E[g2]i−2
+(1− γ ) ∗ (τgproj + (1− τ )gon)2 (13)

where the hyperparameter γ is a decay constant and E[g2]i
is a moving average at time i. In Equation (12), the gradient
gi−1 is scheduled with a transition indicator τ , then it affects
a moving average of adadelta optimizer reducing gradient
computation time and increasing the accuracy performance
of predictor for skewed data distribution.

Finally, to update the current deep learning model for
increasing accuracy performance in skewed data distribution
than incremental deep learning scheme, we proposed sched-
uled model parameter updating algorithm as follows:

θi = θi−1−

√
E[1θ2]i−2 + ε√
E[g2]i−1 + ε

� (τgproj + (1− τ )gon) (14)

where a constant ε is added to moving average.
In other words, when the transition indicator τ is 1 which

means that there is a transition of skewed data distribution,
the proposed scheduler computes projected gradient with
online gradient gon and offline gradient goff . On the other
hand, when the transition indicator τ is 0 meaning no change
of data distribution, the hybrid scheduler ignore the projected
gradient and only use online gradient without additional com-
putation for projected gradient to reduce the processing time.

The pseudo code of proposed scheduler is shown in
Algorithm 1. The whole procedure, from line 1 to line 36,
is repeated at every time sequence i. The pre-processed stream
set Si is submitted to both edge and cloud computing. The
lines 8 to 15 represent phase 1 and lines 16 to 25 describe
phase 2. The lines from 2 to 6 in edge computing and lines
from 26 to 35 in cloud computing depict final phase 3 of pro-
posed scheduler. The proposed scheduler profiles the current
and previous skewed data distribution based on cosine simi-
larity score scoreE1(·) at phase 1. Then, the proposed scheduler
selects one of consumption data from a distributed histogram
buffer Dj at phase 2. In addition to, the newly built buffer Ui
contains each consumption data uj and the variance of cosine
similarity in previous experience buffer Bi−1 and newly built
buffer Ui is compared and chosen to increase the diversity of
power consumption pattern in lines 19 to 20. After that, with
transition indicator τ the gradient for model parameter update
is calculated for reducing accuracy deterioration in transition
of skewed data distribution and decreasing processing time
due to additional computation for projected gradient.

V. PERFORMANCE EVALUATION
A. EXPERIMENT ENVIRONMENT
1) CLUSTER SETTING
The edge-cloud cluster is built using the heterogeneous com-
puting nodes. The specification of computing nodes are
described in Table 1. We distinguish two nodes as follows:
Computing Node 1 is used for representing Edge Computing
which is regarded as having small computing power, and
Computing Node 2 is also used for Cloud Computing hav-
ing more speedy computational. All computing nodes are
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Algorithm 1 Hybrid Deep Learning Scheduling Algorithm
1: procedure Hybrid(Si,Bi−1)
2: if Edge then
3: Calculate gon in Equation (10)
4: Send gon by using Comm(gon,Edge)
5: Receive gi−1 from Comm(gi−1,Cloud)
6: end if
7: if Cloud then
8: A← Si ∪ Bi−1
9: Ci← scoreE1(A)

10: ε = max(Ci)−min(Ci)
11: for j← 1 to n do
12: ri,lower = mini +

(j−1)·ε
n

13: ri,upper = mini +
j·ε
n

14: Dj = {x
p
i,k |ri,lower ≤ ck ≤ ri,upper }

15: end for
16: for j← 1 to n do
17: uj← random(Dj)
18: end for
19: Ui← u1, u2, . . . , un
20: Bi = argmaxx∈{Bi−1,U}(Cx)
21: if Bi == Bi−1 then
22: τ ← 0
23: else
24: τ ← 1
25: end if
26: Receive gon from Comm(gon,Edge)
27: for k ← 1 to i− 1 do
28: goff ,k ←

∂l(Mi−1,Bk )
∂θi−1

29: end for
30: Calculate gproj following [9]
31: gi−1← τgproj + (1− τ )gon
32: Send gi−1 by using Comm(gi−1,Cloud)
33: end if
34: E[g2]i−1← γ ∗ E[g2]i−2 + (1− γ ) ∗ (τgproj + (1−

τ )gon)

35: θi← θi−1 −

√
E[1θ2]i−2+ε√
E[g2]i−1+ε

� (τgproj + (1− τ )gon)

36: UpdateMi−1 to Mi by using θi
37: end procedure

TABLE 1. Detailed specification of each computing nodes.

installed with Ubuntu 16.04 with deep learning framework,
Tensorflow 1.14 [22] and Keras. The input data streams in
AMI dataset are transmitted by using Kafka messaging API.

2) AMI METER DATASET
Our experiment data is designed to validate the purpose of
the proposed technique. Thus, we use a time-series data

stream generated from smart meters that measure low voltage
power in a field, such as household, general use, education,
industrial and agricultural use in a certain area in Korea.
Low voltage AMI meter data is collected by Korea Electric
Power Corporation in 2017 at every 15 minutes. According
to the paper [23], the low voltage is more challenging issue
in predicting or regressing data than high voltage because the
individuals using low voltage have more expanded complex-
ity than high voltage customer. That is why we choose low
voltage dataset to predict next short-term power consumption.
The data stream is separated into each task training deep
learning model because the proposed scheme is based on the
environment where AMI data is continuously generated from
smart meter and fed into the data analysis system. We use
preprocessor to transform the meter data into time series data
with length p = 36. Therefore, the physical time period
for one pattern is 540 minutes when collection interval is
15 minutes. AMI data stream has total task T = 12 stream
set containing different skewed data distribution because we
assume that. On the power consumption data stream, each
task has a disjoint subset with 4 classes in training. In other
words, the total number of trained AMI ID is 48. The test data
is untrained 12AMI ID and there is one AMI ID for each task.
It means that the entire test AMI ID is 12. Each stream set
contains around 11500 AMI meter data, and the total num-
ber of data is around 140000. Figure 8 shows a correlation
coefficient map for power consumption patterns according to
data sequences. The dashed line shows the border of stream
sets in data sequence according to set sequences, and it has
same values of horizontal dashed lines. The blue line means
the value caused by all-zero patterns, and it means that some

FIGURE 8. A correlation coefficient map of training power consumption
patterns according to data sequence. The vertical dashed lines indicates
the border of stream sets according to top x-axis and it has same values
of horizontal dashed lines.
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customer may not use any power during 540 minutes in phys-
ical. All blue lines should be presented symmetrically but it
did not because of scale-down during printing out. However,
we note that we can still check data pattern distribution.
When focusing on one line except for blue lines regardless
of horizontal or vertical, the correlation coefficient values are
diverse from −1 to 1 and most of consumption patterns has
0 correlation coefficient. This means that the data patterns are
rapidly varying among data meters and time sequences.

3) CNN-LSTM MODEL AND EXPERIENCE BUFFER
A hybrid model, Convolutional Neural Network Long
Short-termMemory (CNN-LSTM), has advantages both spa-
tially and temporally hidden feature training by having CNN
layers for spatial feature extractionwith LSTMsupporting the
prediction of sequential data, such as time-series data. We set
the input dimension as 36 with spatially reformation as 6 by
6 and the output dimension as 1 for short-term prediction with
fully-connected (FC) layer. In Conv1D layer, the filter size is
64 and kernel size is 3 with using relu activation layer. LSTM
layer has 50 hidden units to extract temporal feature. The
model has 24267 parameters and all of parameter is trainable.
Additionally, the total size of offline experience buffer is
limited to 100 examples for each stream set because of limited
memory resource assumption in Section II.

B. PERFORMANCE METRICS
1) AVERAGE RMSE
The objective of online deep learning is stability with high
precision and service level agreement for real-time pro-
cessing ability, when forecasting future power consumption
demand with greater precision in order to decrease energy
cost and supply a stable power provision. Tomeasure stability
under the changing consumption pattern frequency distribu-
tion, a prediction error Ei,j at test task i is evaluated at the end
of each training task j defined to examine the effect of chang-
ing data distribution. It means that the predictive performance
after training j on test dataset i. In other words, when the high
Ei,j, it also means that training task j causes a positive effect
on test dataset i. We use root-mean-square-error (RMSE)
as a error metric because it is commonly used to measure
predictive error E in regardless of positive and negative value.
Moreover, to evaluate the accuracy performance on all test
dataset having different data distribution, the average-RMSE
(ARMSE) ARMSEj is calculated at the end of each learning
task j as described by below:

ARMSEj =
1

Ttotal

Ttotal∑
i=1

Ei,j 1 ≤ j ≤ Ttotal (15)

The ARMSE shows how well the deep learning model
learns the current tasks without forgetting the previous ones.
We decide to use ARMSEmetric because the objective of the
proposed algorithm is not only high predictive error in current
task, but also high accuracy in previous task.

2) PROCESSING TIME
The other objective of our proposed scheduler is the reduc-
tion of processing time for AMI meter data stream of mul-
tiple user in different skewed data distribution. To reduce
the performance degradation by multiple AMI IDs, accord-
ing to related works [9], [13], the representative pattern of
skewed data distribution is needed to be preserved in mem-
ory buffer and training procedure with gradient regulariza-
tion for deep learning model is required. That requirement
causes the memory processing time and training time. There-
fore, first we measure the training time Ttrain to evaluate
the proposed scheduler comparing to conventional continual
learning method. Second, memory processing time Tmem is
calculated to validate the proposed algorithm for low latency
system in online learning procedure comparing the other
possible memory buffer processing scheme.

3) COMPARED METHODS
To evaluate the our proposed algorithm effectively, we com-
pare our proposed method to four alternatives:

• RingBuffer referred to in [9] uses gradient regulariza-
tion for incremental class learning and preserves only
recent data in experience buffer using ringbuffer algo-
rithm to manage limited memory space. This method
does not require additional memory processing time
because it does not consider what data to preserve in
experience buffer.

• ClassWise-Kmeans (Cw-Kmeans) We use K-means
for each clients to store representative patterns in experi-
ence buffer. We uses gradient regularization method for
different skewed data distribution.

• CosSim with gradient regularization uses cosine simi-
larity distribution to store representative data in offline
experience buffer. However, it is not scheduled as shown
in phase 3 of proposed scheduler. This method is mainly
used to represent the effective reduction of our proposed
scheme at experiment 2.

• Incremental Learning is commonly used to con-
tinuously incorporate data stream into learning-based
model. This method is compared to show the increasing
accuracy in our proposed method for multi-AMI data
stream.

C. RESULTS AND DISCUSSION
In this section, we show evaluations with the metrics on
the dataset introduced in previous section and discuss about
the results. The average of 50 experimental results was
obtained because the results may vary by randomly initialized
CNN-LSTM model and its parameter values.

1) EXPERIMENT 1: VALIDATION OF ACCURACY FOR
MULTI-AMI DATA STREAM
In this experiment, we validate the accuracy performance
in proposed scheduler. Therefore, we computes an averaged
results, ARMSE denoting how well the deep learning model
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learns current data feature without losing different skewed
data distribution, at each task round is presented in Figure 9.

In Figure 9, the time sequence of stream set starts from
0 to 12 which means that predictive error on untrained ini-
tialized CNN-LSTM model at zero sequence and final all
trained deep learningmodel at twelve sequence. The ARMSE
shows that accuracy performance on all test dataset. The dark
gray with triangle mark shows ringbuffer method which is
conventional method of gradient regularization for continual
learning. It shows best performance at time sequence 2, how-
ever, the ARMSE at other time sequence is not good when
comparing the other method. On the other hand, the Cw-
Kmeans method has two best accuracy point in time sequence
3, 5, 12. The CosSim method shows shows best performance
at 4, 6, 8, 11 and proposed method has best ARMSE at 9.

FIGURE 9. The performance comparison of ARMSE with respect to each
time sequence round. The x-axis shows time sequence of stream set and
the y-axis describes ARMSE. The blue line shows accuracy performance of
proposed scheme on test data set and the other shows the accuracy
performance of compared methods.

For test set 6, 7, 8 and 10, 11, 12, we checked the pre-
diction results comparing incremental learning and proposed
method as shown in Figure 10. The proposed method shows
better accuracy than the incremental learning. The proposed
technique for each set of streams, except for the second time
sequence, showed a relatively similar accuracy to the perfor-
mance of other techniques that refer to previous information
in each streamwithout scheduling it. In the case of the second
time sequence, we can see that there are other patterns that
occur when the variance of the cosine similarity core of the
stored pattern is not increased, and this needs to be improved
later. Moreover, the most important time sequence is final
round because it means that the deep learning model trains
all data stream at final round and high accuracy at final test
task states that the method learns well all data stream without
losing all skewed data distribution. For more detail evaluation
value, final ARMSE at final round 12 is shown in Table 2.
According to Table 2, comparing Incremental Learning,

the all method based on gradient regularization show better
accuracy performance. It means that the changing distribution
problem in multiple AMI customers is decreasing with pro-
jected gradient method. In addition to, the final ARMSE eval-
uation results, which show predictive performance for both

TABLE 2. Final ARMSE evaluations. The best value and proposed method
is denoted as bold. Therefore, in final ARMSE at time sequence 12,
Class-Wise Kmeans shows best accuracy performance. The proposed
algorithm shows as similar as CosSim method without hybrid scheduling.

current and previous distribution plots for various distribution
plots, showed the third lowest error in the proposed algorithm
compared to the existing method. For the CosSim method of
which the strategy of experience buffer management is the
same, but increasing processing time by regularizing gradient
for every time, it shows the final ARMSE, which is almost the
same as the proposed method of hybrid scheduling.

2) EXPERIMENT 2: VALIDATION OF MEMORY PROCESSING
AND TRAINING TIME
To validate the proposed hybrid deep learning scheduling
scheme, we evaluated two processing time: memory pro-
cessing time and training time. To reduce the performance
degradation by multiple AMI IDs, according to related works
[9], [13], the representative pattern of skewed data distri-
bution is needed to be preserved in memory buffer. That
requirement causes the memory processing time as described
with logarithmic scale in Figure 11 (a).

Comparing other memory processing method, RingBuffer
method is denoted as a baseline without processing memory
because it just preserves recent data pattern in a memory
buffer. The blue bar shows the proposed scheme and the
other methods are described as a dark dark gray (Class-Wise
Kmeans), a light gray bar (RingBuffer), and a yellow bar
(CosSim). For each update method that selects and stores
multiple distributions in the buffer, the memory processing
time cannot be faster than RingBuffer that stores only the
most recent data, but the proposed scheme has less memory
processing time than the one that uses K-means clustering for
higher accuracy.

Additionally, we estimates the training time to certify
the accelerated training process by hybrid deep learning
scheduling. When implementing experiment, the elapsed
time between start and end of training is measured. Further-
more, we calculates averaged training time for more explicit
evaluations as described in Figure 11 (b). For each methods
shows training time as like followings: about 9.99 seconds in
a dark gray bar (Class-Wise Kemans), about 9.58 seconds in
a light gray bar (Ring-Buffer), about 9.09 seconds in a yellow
bar (CosSim), and a 5.22 seconds in a blue bar (Proposed
Scheme). The training time of proposed scheme is 43% to
47% faster than traditional methods implementing gradient
regularization for every stream.

We summarizes the processing time with final ARMSE
results in Table 3. As shown in Table 3, we note that there
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FIGURE 10. A comparable test results of predictions in Incremental Learning and Proposed method. (a) is the results on test stream set 6, 7,
and 8. (b) is the prediction results on test stream set 10, 11, and 12.

FIGURE 11. The performance evaluations. (a) shows the performance comparison of memory processing time and (b) presents the
performance comparison of training time, according to four methods: Class-Wise Kmeans, Ring-Buffer (as a baseline without memory
processing), CosSim (as a baseline without scheduling), and Proposed scheme.

TABLE 3. Final ARMSE, memory processing time, and training time for each stream data. The best method in three metric is denoted as bold. Therefore,
in final ARMSE at time sequence 12, Class-Wise Kmeans shows best accuracy performance. The ringbuffer method has the lowest memory processing
time because it just preserves recent data. In training time with gradient regularization (GR), the proposed algorithm shows the lowest training latency.

is a trade-off relation between final ARMSE and memory
processing time. The Class-Wise Kmeans method has lowest
predictive error but can not satisfy real-time service level
agreement for online deep learning platform. Adding buffer
time and training time, the processing time of proposed
method equals 7.903 seconds. Therefore, the processing per-
formance is improved as much as 21.95% when compared
with Ring-Buffer method.

3) EXPERIMENT 3: VALIDATION OF CRITERION VECTOR E1
Finally, when measuring cosine similarity, we conducted an
experiment based on three criterion vector: the proposed E1
vector, randomly selected vectors from a given set of streams,

TABLE 4. A performance comparison of variance based on criterion
vector. When variance is lower than other, it means that the given criterion
vector has more stability on various skewed data distribution than other.

and the first power consumption pattern vectors, as described
in Figure 12 and Table 4.

In Figure 12, the dashed blue line shows proposed
scheme and grayish dashed lines represent other method’s
ARMSE fluctuation. If the proposed method is more sta-
ble in expressing data distribution than other methods,
the degree of variance in ARMSE would be lower than
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FIGURE 12. A performance comparison of ARMSE corresponding to the
time sequence of stream set based on criterion vectors: the proposed E1
vector in Equation (3), randomly selected vectors from a given set of
streams, and the first power consumption pattern vectors.

in other methods. Therefore, we measured the variance of
ARMSE, as described in Table 4, and it shows our proposed
criterion vector E1 shows better stability than others.

VI. CONCLUSION
In this paper, we proposed a cooperating edge cloud-based
hybrid online learning scheme to improve and acceler-
ate learning performance in a multi-AMI ID environment
where the distribution of biased data is dramatically differ-
ent. By analyzing cosine similarity frequency distribution,
a model that can recognize skewed distribution of pattern
was proposed to reduce skewness and increase the diversity
of information in experience buffer. Controlling online and
offline gradient computation, a selective model is robust to
different distribution in continuously incoming data stream
and also reduces the processing time.

In order to verify the performance of the proposed
algorithm, we conducted a comparative experiment on the
proposed method and the existing common learning meth-
ods. When comparing performance against average pre-
diction errors for the varying distribution of test data,
the accuracy performance was higher than the incremental
learning method and similar to the traditional conceptual
learning technique. Compared to the training time perfor-
mance, processing performance was 43% to 47% faster than
conventional learning techniques. Although the proposed
approach requires additional computation procedure to regu-
late online and offline gradients, the processing performance
is increased as much as 21.95% when compared with tradi-
tional Ring-Buffer method.

Our approach shows several directions for future works.
To reduce error caused by valiance failures, the proposed
algorithm should be supplemented by supplementing the
steps for recognizing distribution and sustainable schedul-
ing methods. Other algorithms may need to be considered
because the cosine similarity used to recognize the distri-
bution of data may be ineffective if the data are not power
consumption data. Despite of future enhancement points,
it is hoped that this study will serve as a platform from

which studies of greater depth and specificity may be under-
taken in smart grid applying deep learning and edge-cloud
computing.
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