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ABSTRACT As smart metering technology evolves, power suppliers can make low-cost, low-risk estimation
of customer-side power consumption by analyzing energy demand data collected in real-time.With advances
network infrastructure, smart sensors, and various monitoring technologies, a standardized energy metering
infrastructure, called advanced metering infrastructure (AMI), has been introduced and deployed to urban
households to allow them to develop efficient power generation plans. Compared to traditional stochastic
approaches for time-series data analysis, deep-learning methods have shown superior accuracy on many
prediction applications. Because smart meters and infrastructure monitors produce a series of measurements
over time, a large amount of data is accumulated, creating a large data stream, which takes much time from
data generation to deployment of deep-learning model training. In this article, we propose an accelerated
computing system that considers time-variant properties for accurate prediction of energy demand by
processing the AMI stream data. The proposed system is a real-time training/inference system that deploys
AMI data over a distributed edge cloud. It comprises two core components: an adaptive incremental learning
solver and deep-learning acceleration with FPGA-GPU resource scheduling. An adaptive incremental
learning scheme adjusts the batch/epoch in training iteration to reduce the time delay of the latest trained
model, while trying to prevent biased-training due to the sub-optimal optimizer of incremental learning. In
addition, a resource scheduling scheme manages various accelerator resources for accelerated deep-learning
processing while minimizing the computational cost. The experimental results demonstrated that our method
achieved good performance for adaptive batch size and epoch for incremental learning while guaranteeing
a low inference error, a high model score, and queue stability with cost efficient processing.

INDEX TERMS Accelerator scheduling, continual learning, deep learning acceleration, stream data
processing, time-series prediction, incremental learning, hyperparameter tuning.

I. INTRODUCTION
As the global energy demand of countless electronic devices
increases rapidly, many researchers are paying close atten-
tion to energy data analysis to reduce energy waste. Sensing
devices throughout power systems, such as smart meters and
infrastructure monitors, generate a sequence of measured
values over time, and huge amounts of data accumulate,
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resulting in large data streams. In response to this massive
amount of data being stored and processed, meaningful infor-
mation and hidden patterns are extracted from distributed and
heterogeneous sensors that produce large data streams. The
information and patterns can be used to determine the amount
of energy to be harvested and stored in a stable manner.

Advanced Metering Infrastructure (AMI) is an integrated
system that enables two-way communication between util-
ities and customers. IndustryARC research shows that the
number of AMIs will continue to grow as the industrial
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FIGURE 1. Overall configuration of energy stream processing system in edge-cloud environment.

IoT market is expected to reach $ 123.89 billion by 2021.
By 2020, Korea Electric Power Corporation (KEPCO) will
expand its AMI equipment to 22.5 million customers nation-
wide. Based on the distribution of 2.5 million AMI devices
in 16 years, the data storage capacity is about 68 TB, and
the cumulative data is expected to be about 700 TB when
22 million units are supplied [1]. AMIs provide power utility
companies with real-time power consumption data and allow
customers to choose information about their energy usage
based on price during the day. Compared to traditional data,
stream data are not bounded in size, time-series data, and a
sequence of successive data points include the characteristics
of the number of passes, memory usage, heterogeneity, and
evolving properties in time order. In addition, with these
growing applications of analyzing time series data using
massive data stream to reveal future insights, a scheme to
extract the information from distributed and heterogeneous
source has become a challenging task. Therefore, there are
needs to analyze the massive amount of streaming data from
the variety AMI. The patterns of one sensor can be predicted
by comparison with renewable energy data, while the other
sensor shows a completely different aspect.

In particular, next-generation energy systems manage cus-
tomer demand through complex event processing. Increased
adoption of deep learning models has led to better prac-
tices in energy demand/supply forecasting and energy ser-
vices. Energy services, such as power resource provisioning,
electricity pricing, and energy storage charging/discharging,
requires prediction for input stream data. Prediction of var-
ious factors for the input stream, such as energy demand,
is a complex multi-variate time-series function with multiple
classes of data. In particular, more accurate and faster fore-
casting of energy demand and supply has become essential to
enable the provision of a stable energy supply and to reduce

energy costs. In addition, model accuracy for energy demand
prediction has become essential to provide a stable energy
supply and reduce energy costs. Therefore, there are huge
requirements for the low risk system with the acceleration
of stream data processing framework while providing excel-
lent accuracy [2]. Especially, Renewable Energy Sources
such as solar, wind, and geothermal power generation can
make effective energy management difficult due to intermit-
tence/unpredictability in their production, and can lead to
big accidents such as blackouts and fires if the failure of an
immediate response in the detection of power plant failures
[3]. Therefore, energy demand/supply prediction is being
researched as a core technology of energy system. In addition,
this is an important task to minimize the maintenance cost
of smart home/building/city, and maximize the profit of the
utility company. In the field of time-varying energy data
stream analysis, artificial intelligence such as deep learning
has been reported to outperform traditional time series pre-
diction schemes (e.g., ARIMA) [4].

In addition, traditional training method that repeats the
same model update operation on stream data sets that accu-
mulate over time, so that existing distributed deep learning
computing frameworks can repeat the entire computation of
the entire data set. However, it is inefficient and wasteful of
computational resources, and the retraining period gradually
increased due to the increased training time for the accumu-
lated data set, resulting in reduced predictive performance
for short-term non-stationary AMI data. At the same time,
frequent retraining and deployment of trained models for data
freshness can lead to cost performance degradation due to the
huge overhead of model initialization, worker initialization,
memory access, and so forth. Therefore, low cost systemwith
accelerated stream data processing while providing excellent
accuracy is also required [5]
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As smart meters and infrastructure monitors produce a
series of measurements over time, a large amount of data is
accumulated, creating a large data stream. A large amount
of data collection/refining/processing is required for deep
learning, which takes much time from data generation to the
deployment of deep-learning model training [6]. The chal-
lenges for the systems involve limitations of storage, mem-
ory, and computing capacity for data processing. Therefore,
the processing of big stream data cannot be handled by tradi-
tional analysis systems, and there is a need for efficient analy-
sis systems [5]. Compared to traditional data, stream data are
not bounded in size; rather they are time-series data, and a
sequence of successive data points include the characteristics
of the number of passes, memory usage, heterogeneity, and
evolving properties in time order [6]. In addition, with these
growing applications for the analysis of time-series data using
unbound data streams to reveal insights to guide predictions,
a technique to extract the information from distributed and
heterogeneous sources has become a challenging task. Incre-
mental learning (or online learning) is a machine-learning
method that trains an analytic model through stream data
consisting of time-ordered data instances. Compared with
offline training, themodel updates in incremental learning are
much lighter because they only train a dataset with one or a
few instances at a time. The method of stochastic analysis
with cost-efficient computing can provide low-latency model
training without a delay issue for service model deploy-
ment [7]. As result, there are an framework for incremental
learning on common deep learning tasks with the considera-
tion of sophisticated epoch and batch scheduling [3].

In this article, to accelerate the deployment procedure of
a deep neural network after model training, we propose an
accelerated edge cloud computing method for energy data
stream processing based on an incremental deep learning
scheme. The incremental learning scheme can perform real-
time learning by performing learning using only the queue
model of the latest learning data. In addition, a model recency
metric with the profile of DL operation is proposed to min-
imize the latency of given input AMI data to be trained.
Furthermore, we consider real-time processing to search for
the optimal solution of multi-criteria utility functions. The
system determines the number of data instances and the num-
ber of epochs for temporary mini-batch training to reduce the
amount of processing time and computational cost required
for learning while retraining the model to reflect new features
in recently incoming data stream immediately.

We summarize our contributions as follows:
1) We resolve the parameter update scheduling problem to

reflect short-term non-stationary AMI data at a low latency
while minimizing the degradation of prediction performance
that can result from the use of a partial training dataset.

2) We propose a utility function for adaptive incremen-
tal deep learning to improve model accuracy through rapid
reflection of changes in concept drift and to increase the
learning speed in batch learning. In addition, we propose
a heuristic to quickly find the decision vector that satisfies

multivariate optimization of the utility function and reduces
the overhead in each training iteration.

3) We implemented heterogeneous accelerator (FPGU,
GPU) resource scheduling through layer partitioning in the
edge cloud.

II. RELATED WORK
In this section, we briefly introduce the incremental deep
learning scheme, debate characteristics of data streams, and
discuss the challenges of resource scheduling of heteroge-
neous accelerators in the edge cloud system.

A. TIME-VARYING CHARACTERISTIC OF AMI
STREAM DATA
In predictive analytics and machine learning, the conceptual
drift is a phenomenon in which the statistical characteristics
of the modeling variable change over time. In data streaming,
which is the theoretically-infinite set of data, it is a chal-
lenging issue to solve concept drift in which the statistical
properties of data change [5]. The concept drift is a notion
of a change in the probability distribution of a dataset, such
as time-evolving characteristic [5] and class-wise character-
istic [8], etc. Stream data distribution can be time-varying,
result in a model trained on historical data being inconsis-
tent with the new data, which reduces the accuracy of the
prediction system. In case, incremental learning is a way to
solve the problem by regularly updating the model for recent
data [9], [10].

AMI data [13] is composed of power demand data from
multiple customers over the yearly collected, which might
have both time-evolving and class-wise concept drift. There-
fore, we measured the characteristics of AMI data. To eval-
uate the characteristics of the AMI data, we obtained the
energy demand data collected by the Korea Electric Power
Corporation (KEPCO)measured in 2017 in Jeon-nam, Korea,
provided for research purposes only [14]. It is household
power consumption data collected every 15 minutes from
January to December. Firstly, we use Cosine Similarity Score
(CSS) [11] to measure the distance between two datasets
for the monthly collected AMI from January to Decem-
ber in 2017, Korea. The cosine similarity score is similar-
ity between two non-zero vectors measured by cosine in
inner product space that is a distance in frequency domain
within −1 ≥ CSS ≥ 1.

CSS(A,B) = cos(θ) =
A · B
‖A‖‖B‖

=

∑n
i=1 AiBi
√
A
√
B

(1)

where, A and B are vectors, and Ai and Bi are components of
vector A and B respectively.

We measured average cosine similarity with AMI data
randomly sampled monthly from January to December, with
January as the basis of comparison given as vbasis. Let k-th
randomly sampledmonthly household data of User j as vector
vj,k . Then, a set of randomly sampled vectors is denoted as
Vj = {vj,k |k = 1, . . . ,K }, where K is number of monthly
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samples.

AverageCSS(Vj) =

∑
v∈Vj CSS(vbasis, v)

|Vj|
(2)

From the January to December, we generated random sam-
ples as V Jan

j ,V Fab
j , . . . ,VDec

j and measured Average CSS for
each vector set. We figured out that average cosine similarity
of power demand pattern continuously decreases over time.
The reduction in cosine similarity score means that the prop-
erties of the AMI data change over time and have further
distance than previous datasets as shown in Table 1. From
the result, AMI data has time-varying feature and pre-trained
model on previous data can be out-of-date.

TABLE 1. Cosine similarity (Eq. (2), [11]) of AMI data at 2-month intervals
from January to December 2017 (only for research purposes from KEPCO).

In addition, Table 2 shows test statistic and 5% of criti-
cal value of the Augmented-Dickey-Fuller test on the AMI
dataset with respect to AMI Pattern Range. The Augmented-
Dickey-Fuller (ADF) test [12] is a type of statistical anal-
ysis called a unit root test to test how strongly a time
series is defined by a trend. With the measurement, we can
determine that time-series data is stationary or not. If the
test statistic value is lower than 5% of critical value, then,
it means that the time-series data is stationary with 95%
confidence. The results indicate that the smaller or larger
AMI Pattern Range show stationary characteristics and the
other is non-stationary. Since the AMI data has shown
the time-dependence, and we need to train deep learning
models due to the nature of non-stationary energy data
streams [9], [10].

TABLE 2. Augmented-dickey-fuller test [12] results for annual AMI data
(only for research purposes from KEPCO).

B. AN ONLINE LEARNING FRAMEWORK
Incremental learning is a machine learning method that trains
an analytic model through stream data consisting of time-
ordered data instances. Because stream data is theoretically
defined as an infinite set of data instances, the system should
process continuous, high-volume, open-ended data streams
as they arrived [15]. As we cannot have infinite computing
resources, and it is not cost-efficient, we could consider one-
shot learning for the short-term of incoming data at each
step. Therefore, several data instances for training should
be processed finitely and should be discarded without being
stored in memory. For the cost-efficient parallel process-
ing, training data could be consisting of bunches, but the

number of maximum instances should be constant without
increasing indefinitely over time. Besides, the time required
to process each instance should be small and constant over
time for efficient training [5]. Compared with offline train-
ing, model updates in incremental learning are much lighter
because they only train dataset with basically one or small
batch instances at a time. Incremental learning can be also
applied for reinforcement learning (RL) for their processing
acceleration [16]. Different from traditional batch learning
algorithms, they proposed novel incremental learning scheme
for RLwith concrete convergence and robustness. As a result,
the incremental learning with cost-efficient computing can
provide low latency model training without straggling issue
for service model deploy [7].

Velox [17] is an efficient data management system for
implementing large-scale analytic pipeline for an online
model management, maintenance for deployed model, and
model serving which are model based data analysis pro-
cedure. For more specific example for machine learning
framework, Clipper [18], as one of Velox system, is a general-
purpose low-latency prediction serving system. Clipper pro-
pose a standard platform architecture to simplify model
deployment for serving at various frameworks, while arbi-
trating between trained model serving and varying deep neu-
ral network frameworks. Therefore, new machine learning
frameworks andmodels can be introduced without modifying
end-user applications. The model selection layer simultane-
ously deploys many models and then dynamically selects and
aggregates forecasts for each model to render more powerful,
accurate, and contextualized forecasts while reducing the
straggler cost. In conclusion, Clipper introduces caching,
layout, and adaptive model selection technologies to reduce
forecast latency and improve predictive throughput, accuracy,
and robustness without modifying the underlying machine
learning framework. However, Clipper has limitations, such
as not managing the training or retraining of the base model
within each framework. All models are outdated or inaccu-
rate, and Clipper cannot improve the accuracy beyond what
can be achieved through an ensemble. In addition, as Clipper
does not optimize model execution within its machine learn-
ing framework, the latency or execution time has dependent
on processing performance of backend framework.

For the incremental deep learning model with classifi-
cation problem, the objective is to learn a function F :
Rd

→ Rc based on a sequence of training example
D = (x1, y1), . . . , (xT , yT ), that arrive sequentially at each
timestep, where xt ∈ Rd is d-dimensional instance represent-
ing the features and yt ∈ {0, 1}C is the class label assigned
to xt and C is finite number of classes. The prediction is
denoted by ŷt , and the performance of the learnt functions are
usually evaluated based on the cumulative prediction error:
εT =

1
T

∑T
t=1 L(ŷt , yt ), where L is the loss function that

defined as in 1 if the given value is same, and 0 otherwise.
Let assume b as the size of temporary mini-batch given in
time t to train the model. With the mini-batch SGD algo-
rithm [19], the incremental deep learning can be derived
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as follows:

θt+b← θt −
η

b
∇θt

∑
i

L(F(xt+i; θt ), yt+i) ∀i = 1, . . . b

(3)

where, θ is model parameter and η is training rate.
As the model cannot be trained over an entire data set,

a sub-optimal predictor of incremental learning cannot gain
full information. As a result, the performance of prediction is
not so much accurate as batch learning. An adaptive assign-
ment of hyperparameter to incremental deep learning scheme
is considered in this article for the robust and fast energy data
stream processing.

For incremental learning tasks, it is important to determine
the retraining time to improve the data integration latency,
which selects the best time instance to perform a given task,
such as updating the model. At the same time, frequent
retraining and deployment of latest trained models can lead
to cost performance degradation due to the huge overhead
of model initialization, worker initialization, memory access,
etc. Finally, there is a meta-value called hyperparameters in
the common framework of machine learning, which yields an
optimal model by minimizing predefined loss functions in a
given independent data set [7]. Among the hyperparameters,
there are two main control variables for model training. It is
used interchangeably with the number of instances training
the stream dataset, the size of the batch, and the number of
passes in a given training stream set is called an epoch in
this chapter. Training with small batches is usually vulnerable
to outliers (or noisy data). Also, large numbers of epochs
generally help to find good predictors before the model is
overfitted, while larger epochs require longer training time.

C. RESOURCE SCHEDULING SCHEME FOR ACCELERATED
EDGE CLOUD
The Graphics Processing Unit (GPU) is a structure optimized
for matrix operations and operates in a single instruction
multiple data (SIMD) scheme, making it ideal for quickly
processing DL training that repeatedly performs the same
task on a large amount of data. Unlike general-purpose pro-
cessors (GPPs) such as GPUs and CPUs with pre-synthesized
general-purpose cores, the logic functions of FPGAs can be
changed by user design.While FPGA is reconfigurable, in the
case of GPP, the structure of the core logic is fixed, so that the
logic can not be changed according to the needs of a particular
application. In contrast, FPGAs can change logic functions to
favor an application, modern FPGA-based acceleration can
guarantee higher processing performance than GPP, espe-
cially on utilization, power efficiency and latency for Real-
timeAI [20]. Also, unlike other processors operated by opera-
tion set, FPGA can solve synchronization according to timing
problem by specifying function at gate-level, so it can acceler-
ate specific operation like Sparse Matrix Multiplication [21]
or design like BNN [22], TNN [23], etc. Accelerated learning
by implementing a compressed neural network. However,
there is a context switch overhead that must be continuously

performed while data input/output (DMA) model training
is performed from the main host memory space to the co-
processor processing space.

There have been many studies on scheduling schemes to
improve energy efficiency and execution speed when exe-
cuting specific tasks in consideration of task partition in the
FPGA-GPU hybrid system [24], [25]. In particular, Rethina-
giri et al. [25] have applied task splitting to face recognition
applications based on LBHP algorithms and found a 40%
increase in energy efficiency compared to traditional GPUs.
Partitioning is done in a way that maximizes efficiency,
taking into account the energy efficiency of each subtask.
In Inta et al. [24], task division is applied to a variety of
compute-intensive applications such as Monte Carlo Inte-
gration, LAPACK, and wavelet decomposition. Partitioning
is applied to reduce execution time, taking into account the
running characteristics of each subtask.

III. A MODEL DESCRIPTION OF STREAM DATA
PROCESSING SYSTEM WITH THE ADAPTIVE
INCREMENTAL LEARNING SCHEME
A. ARCHITECTURE AND FUNCTIONAL DESCRIPTION
In this section we present the architecture and procedure of
the proposed incremental learning scheme with streamlines
of continual updating in the deep learning model as shown
in Fig. 2.

1) DEEP LEARNING PREDICTION MODULE
Time-series data sets can be converted to supervised training
data sets as further data arrived in the future timestamp,
which mean that we can know the ground truth values for
the prediction target. The training loss value on the prediction
model of the i-th value can be represented L(yi, y∗i ) where
yi is the i-th predicted value and y∗i is the i-th measured
value. In incremental learning, pre-trained data instances are
discarded without being stored on memory or storage. Unlike
batch/mini batch training, which trains with multiple epochs
for a given entire data set, incremental learning can only train
with temporary mini batches.

2) DATA STREAM HANDLER
The process of converting a data sequence into an input tai-
lored to the size of the convolutional layer’s input dimension
is required for the data sequence. After the pre-processing
of the input data stream, the data is refined with their arrival
sequence. Here, k-th values grouped in X and Y are referred
as an data instance dk . An arrived time of dk is given to ak .

At any time t , data instance except for discarded from
previous (i − 1)-th update, are waiting in the queue for i-th
update. In case, the length of the queue at time t is given by:

Q(t) = {dk |ti−1 ≤ ak ≤ t} (4)

Expectation of |Q(ti)| is τi−1λ, where τi−1 denotes time
interval between consecutive update (ti−ti−1) and data arrives
as Poisson or uniform distribution with arrival rate λ.
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FIGURE 2. An illustration of the system model for AMI data stream processing with adaptive incremental learning.

3) ADAPTIVE INCREMENTAL DEEP LEARNING SOLVER
Incremental deep learning uses an online optimizer that trains
a model through temporary mini-batch training. Therefore,
it is not possible to train with several epochs over the entire
dataset as usual. To prevent the possibility of falling into
local minima, a robust learning method for error and noise
is required. A compromise between batch learning and incre-
mental learning is incremental learning in a batch-basedman-
ner, which can be applied to a data stream analysis system.
For a given temporary mini-batch, we can determine the
hyperparameter for training, while expecting high accuracy
and training time performance [3]. In particular, the adaptive
incremental deep-learning solver dynamically schedules the
batch size and epoch for the given temporary mini-batch
based on the degree of concept drift and the training curve
of the regression model.

Burst input data stream rates can lead to situations in which
the queue is full, and the system only processes data streams
that have previously been entered for training. Therefore,
the scheme should operate under queue stability conditions
that do not cause queue overflows, expecting high levels of
training convergence. Profiled results are a characteristic of a
system that can be profiled or known before training, such as
the computing power of the hardware.

In section IV, we present the hyperparameter assignment
criteria, which are used whenever the system repeats model
training with temporary mini-batches.

B. DEEP-LEARNING TRAINING MODEL WITH ADAPTIVE
INCREMENTAL LEARNING
In this subsection, the deep-learning training model with the
incremental learning scheme is presented. An overview of

FIGURE 3. Description of data instance and instance queue used for
Eq. (5).

the scheme is shown in Fig. 3. Let a deep-learning model (in
this article, simply call it model) be defined as set of param-
eters (referred to as weight and bias in a neural network)
exquisitely adjusted to represent the relationship between the
input and output data domains. As a data stream arrives,
a series of model retraining begins with incremental learning
to adjust to new features in the data. In addition, inference is
performed on the arrived stream using the pre-trained model
in parallel.

1) ITERATION TIME MODEL OF MINI-BATCH SGD BASED
DEEP LEARNING
In this subsection, the cost model of processing time for
updating deep learning model in time ti is considered; it
basically follows the model in [3], [7], [26].
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Re-training is proceeded intermittently when enough data
is collected in queue. As a model update, a series of data
integration, retraining results are conducted.

The time of i-th update is defined as ti. A set of instances
Di arrived between ti−1 and ti is to be used to update a model
Mi to Mi+1 which model parameter are adjusted with the set
of instances. Note that the data is not discarded after it is
included; values are overlapped over stream sets.

Di = {dk |ti−1 ≤ ak ≤ ti} (5)

Let |Di| as number of instance arrivals within i-th model
update, which is batch size simply denoted as bi.
Updating model over new data incurs non-trivial training

cost, which is directly measured by the processing time.
Within a machine, iteration time of epoch in DL task is
represented as sum of time measured in mini-batch upload,
feed-forward, back-propagation and gradient transfer tasks.
The feed-forward and back-propagation tasks are processor
related and mini-batch upload and gradient transfer tasks are
memory related.

As there are model related and computing related parame-
ters existed, we can estimate performance model coefficients
by using nonlinear multi-variable regression model. In paper
[3], [7], they empirically shown strong linearity of relation-
ship between processing time and data size d ∈ N, which is
in set of natural number. The approximated processing time
to compute i-th update with size of input bi is given by,

τ iter (Di) = (FWc(Di)+ BPc(Di))

+ (UPm(Di)+ TRm(Di))+ θind
≈ θc |Di| + θm |Di| + θconst
= (θc + θm) |Di| + θconst
= θproc bi + θconst (6)

where, FWc,BPc,UPm,TRm represent the completion time
estimation function with respect to given mini-batch Di for
feed-forwarding, back-propagation, mini-batch upload, and
gradient transfer with communication, respectively. And θc,
θm refers to the performance estimation parameter for compu-
tation and memory access operation. Also, feed-forwarding
and back-propagation are computation-oriented task, and gra-
dient transfer and communication are memory-oriented task,
which is illustrated in Fig. 4. Then, the elapsed time of i-th
update e ∈ N epoch can be presented as proportional to the
number of epoch. As a result, we can derive the elapsed time
of model update as follows:

τ iter (bi, ei) = (θproc bi)× ei + θconst (7)

where, θconst is the overhead of model training and initializa-
tion procedure in devices. Models trained at each stage are
deployed to service applications, responding to user requests
using the latest deep learning models. Deployment of the
updated model involves loading memory, disks, and net-
works to load model weight parameters, depending on the
system environment. In addition, for the next deployment,

FIGURE 4. An example of iteration time in mini-batch SGD based Deep
Learning used for Eq. (7) [7], [26].

there is initialization overhead for training new instances in
data stream.

For the same amount of data instance, the number of update
to training the data instance can affect on training time. As the
number of update larger, model deployment and initialization
occur more frequently, result in need more cost for training.

From the training time model in Eq. (7), we define
cost reduction function CR derived with subtraction of cost
through only once/ most frequent update policy. For the same
amount of temporary training data in queue, themost frequent
update requires (θprocei + θconst )bi and only once update
requires θprocbiei+θconst . The degree of cost savings through
fewer model updates as follows:

CRi(bi) = −θconst (bi − 1) ≈ −θconstbi (8)

2) MODEL RECENCY
Model Recency, R, is defined as a ability of how quickly the
deep learning model can reflect a recent trend of input data
[7]. Ri is time for each data in streaming data set If the time
difference between ti and ti−1 is small enough, it will have
the best recency performance. In extreme cases, updates can
be performed every time an instance arrives. If there is not
enough data to train themodel, it should be able to use the data
quickly for model updates to provide better quality services.

When queue is in stable condition, model recency Ri is
waiting time of a instance for further update is only time
interval between arrival time of instance and next update time
as follows:

Ri =
∑

k∈Q(ti)

ti − a
Q(ti)
k (9)

Assume that data generated in data source is periodic and
arrival comes as uniform or Poisson distribution with average
interarrival time 1/λ. When there are bi number of instance
arrived, model recency (Eq. (9)) is derived as function of bi
as follows:

Ri(bi; λ) =
bi−1∑
i=0

i/λ ≈ b2i /λ (10)
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3) MODEL CONVERGENCE RATE
The impact of training set batch size on accuracy performance
is controversial. Usually, the models trained with the smaller
batch size are likely to fail to generalization, showing the
more unstable fluctuation [27], [28]. Research experimentally
shows the testing accuracy of the trained CNN on the MNIST
data set and CIFAR-10 according to the batch size [29]. The
result with small batch size shows the lowest test accuracy,
while it shows highest test accuracy when the large batch size.
The larger number of epochs, the number of data to pass the
model, to adjust the parameters in the model usually improve
prediction accuracy. Therefore, the number of epochs for
training helps to a find good predictor in deep learning before
the number of epochs where model becomes overfitting.
Optimus [26] model shows the convergence curve and the
equation leverages the training loss converges at a rate of
O(1/E) regarding the number of epochs, E. The unstableness
metric is proposed to implement robust DL framework on
concept drift in [3], but shows non-convergence of model
training according to high fluctuation in performance.

Therefore, we define the degree of the trained model qual-
ity converged into saturation as a model convergence rate
function. In incremental learning, as concept drift occurs,
theremay be high training loss resulting in lowmodel recency
from the viewpoint of model convergence. Lower conver-
gence for the new arriving stream degrades the accuracy.
To achieve fast convergence for a given stream with new
distribution, the batch size and epoch size are increased. With
a large batch size, robustness to noise is guaranteed, while
a large epoch provides high convergence for a given mini-
batch. To detect concept drift, we utilize the training loss at
each update. However, swift loss fluctuation is not conducive
to model stability [27], [28]. In the paper by Ross et al. [5],
they proposed an exponentially weighted moving average
to detect concept drift. We use the average loss value to
determine instability through the k time window method. As
training loss of the update instance in i − 1 is given as tli−1,
the average training loss is derived as follows:

atli = 1/k
∑
j

tli−j ∀j = 1, . . . k (11)

We define model convergence rate as atli
biei

, where bi is the
number of instances in a stream data set and ei is the number
of passes of given stream data.

MCRi(bi, ei) =
atli
biei

(12)

4) QUEUE STABILITY CONDITION
In the queuing theory, the system of queueing networks is
considered as stable if its long run averages exist and are less
than infinite. Especially, a single queue system is stable if
arrival rate is less than system processing capacity.

The queue length after i-th update is denoted as summation
of previous queue length and gap of incoming and processed

stream data in queue.

|Q(ti)| → |Q(ti−1)| + τi−1λ− bi (13)

When we assume that initial state of queue Q(t0) is empty,
a condition for queue stability can be simply defined. From
the definition of stability and Eq. (7), a stability condition of
queue is derived as follows:

τi−1λ ≤ bi =
τi−1 − θconst

θprocei
(14)

From the definition of τi, it should be greater than 0.
Thereafter, by using Eq. (14), we can get the constraint for
the number of epoch in update i as follows:

Constraint for queue stability:

ei ≤
τi−1 − θconst

τi−1θprocλ
(15)

In addition, due to ei ∈ N, the right term of Eq. (15) should
be greater than or equal to 1. As a result, the minimum time
interval between succesive updates is derived as:

τi−1 ≥
θconst

θprocλ− 1
(16)

where, θconst
θprocλ−1

is lower bound of time interval between sub-
sequent updates. If θprocλ < 1, then stable processing is not
possible and data drop policy might be useful, however it is
not considered in this article.

IV. AN ADAPTIVE INCREMENTAL DEEP LEARNING
SCHEME
A. COST FUNCTION AND MULTI-CRITERIA COST
OPTIMIZATION
This subsection presents the cost function of the incremental
learning solver, which implies the multi-objective equation of
model recency, training cost, and model accuracy to minimiz-
ing inference service loss.

Over time, the characteristics of data change, and retraining
for a data stream must be handled in real time. Therefore,
we consider the degradation of computing performance due
to scheduling overhead. To address this problem, we pro-
pose short-term, stateless scheduling of model retraining. The
decision vector contains the size of the input and the number
of epochs for the i-th update. These variables indirectly con-
tribute to the recency and short-term instability of the model,
which determines the performance of the trained model.

At the same time, queue stability should be guaranteed to
avoid system failure caused by buffer overflow. As stream
data continuously arrives in the system, the decision variable
ti, which is the time to update is simply equivalent to the input
size (or batch size) bi.
Therefore, based on Eqs. (9), (8) and (12), we design a

cost function for the quality ofmodel retraining that indirectly
affects inference loss and training cost as follows:

f (bi, ei) = Ri(bi)+ γ1CRi(bi)+ γ2MCR(bi, ei) (17)
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where γ1 and γ2 are the weight factor of cost reduction and
instability, respectively.

Thus, from Eqs. (15) and (17), the optimization problem is
derived as follows:

min
(bi,ei)

f (bi, ei) :=
b2i
λ
− γ1θconstbi + γ2

atli
biei

subject to 0 < ei ≤
τi−1 − θconst

τi−1θprocλ
0 < bi (18)

In addition, to find the optimal solution of Eq. (18) and to
train the deep-learning model with (b∗i , e

∗
i ), in a continuous

manner are proceeded on incremental learning system in
advanced.

B. OPTIMAL TRAINING SCHEME
In this subsection, we introduce our proposed incremental
deep-learning-based optimal model retraining scheme. Fig. 5
shows the structure of the proposed incremental learning
solver with system variables.

FIGURE 5. Structure of incremental learning solver used for Eq. (18).

Assume that model training is proceeded until (i − 1)-th
update. After the previous update, the solver obtained infor-
mation of the average training loss atli with time-window
averaging.With the conditions of recency, training cost, insta-
bility, and instance queue, the solver makes a decision for the
next update time ti, equivalently bi, and epoch ei.
Theorem 1: For the condition of ei ∈ N, there are only one

b∗i exists in R+ that minimize the cost function of Eq. (17)
within continuous range that bi > 0

Proof: To prove conditions, the first and the second-
order partial derivative of f for bi are given as follows:

∂ f (bi, ei)
∂bi

=
2bi
λ
− γ1θconst − γ2

atli
b2i ei

(19)

∂2f (bi, ei)

∂b2i
=

2
λ
+ γ2

2 atli
b3i ei

(20)

From the corollary of convexity for second-order condi-
tions [30], function f is strictly convex if ∇2 f (x) � 0 for
x ∈ dom f . The cost function f is strictly convex where
bi ∈ R+, because f if continuous function for ei ∈ N and
second-order partial derivative is at least 2

λ
, even second term

is also larger than zero. As Eq. (18) is strictly convex in case
of bi > 0, the minimum value of multi-criteria cost function
can be derived as solution of ∂ f (bi,ei)

∂bi
= 0.

Algorithm 1 Adaptive Incremental Learning Algorithm for
Stream Data Processing
Input: Update Step i, Current Model Mi, Training time
regression param θproc, θconst , Instance Queue Q(t), Prev
update timestamp ti−1, Optimization Parameters (ε, η, γ )
Output: Retrained ModelMi+1
01:Wait until (t − ti−1) > θconst

θprocλ−1

02: Let ei = e = (t−ti−1)−θconst
(t−ti−1)θprocλ

03: while do:
04: grad = f (ei)−f (ei−ε)

ε
// gradient

05: If grad ≥ 0 or η � grad < ε:
05: break //stop condition
06: ei = ei − η � grad
07: η = γ � η //decay step size
08: bi = d(ei) //refer Eq. (21)
09:Wait until Q(t) ≥ bi
10: Mi+1 ← train(Mi; bi, ei) //mini-batch training.
Eq. (3)
11: returnMi+1

In case of bi 6= 0, the first-order partial derivative of f is
equivalent to

⇒
2
λ
b3i − γ1θconstb

2
i − γ2

atli
ei
, (21)

which is form of cubic equation. For the general cubic
equation ax3 + bx2 + cx + d , critical point is given to,

xcritical =
−b±

√
b2 − 3ac
3a

(22)

When c = 0, there are two critical points on xcritical =
(0, −2b3a ). For the original problem, bi,critical = (0, 2γ1θconst ).
By using geometric analysis, the equivalent function of
bi > 0 is λγ1θconst

3 . Because the value of the equivalent func-
tion on bi → 0+ is − γ2 atliei

, which is a negative value, there
are always two imaginary solutions and one positive solution
at ∂f (bi,ei)

∂bi
is zero. Additionally, there are already solutions of

cubic equations in general. �
We define function d(ei) as natural number solution of

cubic equation in Eq. (21) with respect to parameter ei.
For ei ∈ N, a cost function is derived from Eq. (18) with

d(ei) as follows:

min
ei
f (ei) :=

d(ei)2

λ
− γ1θconstd(ei)+ γ2

atli
d(ei)ei

subject to 0 < ei ≤
τi−1 − θconst

τi−1θprocλ
(23)

According to Eq. (23), it is not easy to find an optimal
solution. Instead, to reduce the computational complexity of
optimization, we propose heuristics to find a sub-optimal
solution of the objective cost function. For any non-convex
function, we can find the local minimum through the gradient
descent method [31]. Gradient descent is a first-order iterative
optimization scheme for finding the minimum of a function.
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In the heuristic approach, starting from e = τi−1−θconst
τi−1θprocλ

,
while gradually reducing the step size, the function space is
searched until themoving step becomes smaller than ε, to find
the local optimum.

ej+1i = eji − η∇f (e
j
i) (24)

where η is the rate of the step size.
We can apply early-stop to the optimization procedure

when ∇f (e0i ) is positive, based on the upper bound condition.
Indeed, through the an empirical test, we found that the num-
ber of searches for convergence is approximately 5 because
the frequent occurrence of early-stop case even for the worst
condition. Finally, we can always obtain the solution with the
heuristic.

As a result, the numbers of instances and repetitions for
each training iteration depend on the following contribut-
ing factors: the detected number of errors in concept drift,
the computational overhead of the training model, and the
arrival rate of the input data stream. High input data stream
rates can lead to situations in which the queue is full and the
system can only afford to process data streams that previ-
ously entered for training. Therefore, the schemeworks under
queue stability conditions in which queue overflow will not
occur, expecting high learning convergence.

V. ACCELERATED DEEP LEARNING PROCESSING IN EDGE
CLOUD SYSTEM
A. DEEP LEARNING TASK SCHEDULING SCHEME IN
ACCELERATED EDGE CLOUD
The processing time requirement for the n-th task among N
tasks is defined as Treq(n). When the task comes in, Treq is
user requirement on processing latency of given request, but
it is reduced over time. Treq is defined as a value obtained
by subtracting the difference between the time at which the
task is entered and the current time at which the scheduling
is performed from the initial processing time requirement.
We also assume that FPGA and GPU are scheduled with
non-preemptive method. After one task has been processed,
the next task is getting processed similarly.

1) RESOURCE SET
When the maximum processing performance of each FPGA
and GPU is defined as PFPGAmax , PGPUmax request/sec, the over-
all processing performance of the system consisting of N
FPGAs and M GPUs is generally (N ×PFPGAmax +M ×P

GPU
max )

request/sec. If more tasks are entered than given through-
put per 1 second, it can not be processed through the cur-
rent system. More accelerator resources are required through
resource provisioning, such as VM scaling or Cloud offload-
ing. This situation is not considered, and it is assumed that
a smaller number of packets are always received than the
maximum processing performance. A purpose of scheduling
is to minimize total energy consumption for processing N
tasks while satisfying all processing time requirements of N
tasks.

FIGURE 6. Illustration of resource scheduling scheme in accelerated edge
cloud that we proposed.

When we define the resource set of entire computing
respectively,

R = {Ri where 0 < i ≤ N for FPGA,

Rj where N < j < N +M + 1 for GPU} (25)

Since the intermediate data size and the preprocessing
overhead of the deep learning model are different, the limited
network bandwidth and service functions of the edge node
will solve the scheduling problem for maximizing the number
of deep learning tasks. We also want to ensure the quality of
service (QoS) of each deep learning service in scheduling.

Deep learning network is designed in amulti-layered struc-
ture. Each layer creates the next feature through the interme-
diate feature data created in the previous layer, and classifies
or recognizes the output through the feature output from the
final layer.

In deep learning networks, layers adjacent to input data
are considered as lower layers, and intermediate feature data
generated in each layer is generally smaller than the size of
input data.

Deep learning network partitioning is performed through
layer decomposition and profiling to solve the communi-
cation performance problem between GPU and FPGA and
the communication bottleneck problem in multi-level edge
structure.

2) DEEP LEARNING EXECUTION TIME AND COST
ESTIMATION
Let us define a typical Deep Learning Task as a set of sequen-
tially linked tasks represented as pipeline as follows:

T = {T1,T2, . . . ,TK } (26)

Among them, the function xki (t) expressing the occupation
due to the allocation of the task k at a specific time t to define
available computing resources is as follows.

xki (t) =

{
1 if task Tk is allocated to Ri at time t
0 otherwise

(27)

Resource profiling is the method to figure out expected
execution time for a task Tk when it is processed on resource
type in FPGA/GPU and manages the execution time data in
the form of table. The row of table represents different task

195350 VOLUME 8, 2020



S.-H. Kim et al.: Accelerated Edge Cloud System for Energy Data Stream Processing

type of each layers in neural network kand the column rep-
resents accelerator (resource) type i. Execution time data τ ki
is the average value acquired from enough times of repeated
execution. Especially for the FPGA, additional execution
time cost is required for model as reconfiguration overhead
rcik while logic changes of FPGA as rcik (t) = |x

k
i (t − 1) −

xki (t)| ∗ r
k
i , where r

k
i is reconfiguration time for task k in

FPGA i.
Based on this, the execution time for sub-task should be

modeled in Eq. (7) with regression parameters θproc, θconst
for each FPGA and GPU, respectively. When adaptive incre-
mental deep learning solver make decision, they request the
resource allocation and also acquire performance profiling
represented as θproc, θconst , respectively. After then, with the
adjusted batch size and epoch, the solver send DL pipeline
request to task scheduler.

3) TASK SCHEDULING
At this time, the execution time as a service response time for
one application service is expressed as an input of the next
allocation as a result of the previous time allocation. Since
the mathematical model of execution time is expressed in the
form of coupled input and output, this problem is difficult to
solve with general linear programming and is an np-complete
problem.

To solve cost minimization along with the issue of guaran-
teed resource scheduling, you need to allocate the appropriate
resources to pay the minimum cost for the processing of
individual tasks. In addition, the entire DL schedule created
as an individual task schedule must meet the custom dead-
line. Kim [32] proposed a step-by-step scheduling scheme.
With the colored Petri net model, colored tokens are defined
in the pipeline that perform different behavior depending
on the color, which controls the scheduling of the specified
structure. This plan consists of two phases. The first step is
the scheduling step, which determines the hierarchical ratio
and assigns a child deadline to each job through reverse
token delivery of scheduling tokens through the Petri net.
The second is the execution phase, which passes execution
tokens to allocate the appropriate resources according to the
load percentage of each task, so as not to violate the deadline.
As a result, the path responsible for most of the load in the
pipeline, that is, the critical path, is discovered and passed
by the scheduling token. The scheme uses quiet, simple and
intuitive heuristics. This method uses static estimated job pro-
cessing time, but is classified as dynamic scheduling as job
scheduling is performed according to the remaining service
level indicator.

Defining relative load as the average execution time over
FPGA/GPU resources as relative load rate for all sub-tasks in
the pipeline,

relative load rlk (t)=
1

(M+N+1)

N+M+1∑
i=1

τ ki (t)+
N∑
i=1

rcki (t)

(28)

Algorithm 2 Adaptive Incremental Deep Learning Task
Scheduling Scheme in Accelerated Edge Cloud
Step 1. Heterogeneous Accelerator Profiling (task
scheduler)

Evaluate execution time of DL task for FPGA/GPU
with respect to the size of task workload (linear regression
on batch size/epoch);

Repeat until every entitled DL task in model M =
{m1,m2, . . . ,mP} repository evaluated;

Create a resource profiling table;
Step 2. Planning of DL Training (adaptive incremental
deep learning solver)

Wait for enough stream data to queue up;
Adaptive incremental learning solver send the infor-

mation of DL model, expected size of task workload;
Get resource profiling in terms of (θ ipproc, θ

ip
const ) from

resource scheduler, τ iter (bi, ei) = (θproc bi)× ei + θconst ;
Adjust the batch size and epoch using Eq. (18);
Send DL pipeline T = {T1, . . . ,Tk} into resource

scheduler, Eq. (26);
Step 3. Execution of DL Pipeline (task scheduler)

Assign the best accelerator Rk (t) = {Ri|τ ki <

sdk (t),min(Ci × τ ki ), x
k
i (t) = 1};

Execute tasks based on mini-batch SGD, Eq. (3;
Send training error to the solver;

Defining load rate as relative load of task k compared to
the relative load of its following tasks.

load rate lrk (t) =
rlk (t)∑K
j=1 rl

j(t)
(29)

Defining a sub-deadline to identify a problem as a combi-
nation of sub problems to reduce the complexity of problem
solving

sdk (t) = lrk (t)×

(
Treq(n)−

k∑
k ′=1

Rk (t)

)
(30)

When the leasing cost per unit time for arbitrary resource
type i is denoted as CI and there are known estimated times
for task execution times on each task, we can allocate themost
efficient resource guaranteeing the sub-deadline for the j-th
task from resource type as follows:

Rk (t) = {Ri|τ ki < sdk (t),min(Ci × τ ki ), x
k
i (t) = 1} (31)

If there is no available resource type to guarantee the sub-
deadline, this may cause deadline violation for the entire
pipeline. Then there might be additional policies for the
system operation might be required. Because resource set R
is defined for both FPGA and GPU in Eq. (25), specified
of resource type is not preferred and only the resource that
minimize processing time evaluated in Eq. (31) is allocated
for the task.
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FIGURE 7. A stream-based incremental deep learning system with accelerated computing platform for performance evaluation.

In algorithm 2, there is procedure of incremental deep
learning acceleration through task scheduling on heteroge-
neous accelerator. As adaptive incremental learning solver
send the information of DL model, expected size of task
workload, the profiled parameter (θproc, θconst ) is returned.
After allocating amount of training task with the parameter,
configured request of DL task is submitted to resource sched-
uler. A resource scheduling scheme manages various acceler-
ator resources to accelerated deep learning processing while
minimizing the computational cost.When adaptive incremen-
tal deep learning send DL task into resource scheduler, it is
able to accelerate DL task processing using heterogeneous
accelerators.

VI. PERFORMANCE EVALUATION
In this Section, to evaluate the performance of the proposed
adaptive incremental deep learning scheme and resource
scheduling scheme, which provides efficient operation of
stream data training in the energy data processing system,
we implemented the stream-based incremental deep learn-
ing system with accelerated computing platforms, as shown
in Fig. 7. We conducted experiments on the real benchmark
dataset for the prediction of future demand and generation.
The cluster setup for training and testing, datasets, specifica-
tion of a used deep learning model are given in Section 6.1,
the detailed performance metrics for evaluation is provided in
Section 6.2, and the results with the comprehensive compar-
isons are reported in Section 6.3.

A. EXPERIMENTAL ENVIRONMENT
In the experiment system, the smart metering device gen-
erates energy stream data. The data is converted to a stan-
dard format and sent to the data processing cluster through
a distributed queuing system. The data processing cluster

connects to the stream, acquires the data in small batches,
preprocesses them, and queues them for deep learning train-
ing. By obtaining learning parameters of the next step using
the adaptive incremental learning solver, cluster utilize het-
erogeneous acceleration resources to training the demand
prediction model.

1) CLUSTER SETTING IN EXPERIMENT
Firstly, We built the two clusters with the edge cloud plat-
form using the heterogeneous type of computing nodes,
respectively. Due to the heterogeneity in the multiple cluster
composition, various resource profiling was conducted on
each cluster. The specification of computing nodes in the
heterogeneous cluster of each having GPUs, FPGAs and
CPUs was shown in Table 3. The cluster was consisted with
two types of GPU computing nodes, namely, one with GTX
1080 and one with NVIDIARTX 2060 super. The edge server
is constructed with Arria 10 GX FPGA from Altera platform.
The details of the specification were described in Table 3.
All computing nodes in the cluster was installed with Ubuntu
16.04, and all experiment was conducted with deep learning
platforms: version 1.12.0 of TensorFlow and 2.2.4 version
of Keras. Intel R© FPGA SDK for OpenCL software tech-
nology is one of High Level Synthesis (HLS) development
environment that enables software developers to accelerate
applications by targeting heterogeneous platforms with Intel
CPUs and FPGAs. This environment combines abstracts
FPGA details while delivering optimized results. We used
TensorFlow to implement CNN-LSTM model on GPU, and
OpenCL with C++ to implement on FPGA. Also, for the
stream data handling, we deployed a Kafka message broker
and spark distributed data processing framework as a front-
end system. The input data streams in the AMI database were
sequentially sent into the system in a uniform time interval
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TABLE 3. Detailed specification of each computing node in the cluster
used for experiment.

TABLE 4. Benchmark dataset used for evaluation.

using Kafka messaging API. After pre-processing the data
stream, it is used as inference and training for incremental
deep learning in spark workers.

2) AMI DATASETS WITH ENERGY DATA ANALYSIS SCENARIO
In this article, we use AMI data for an experimental dataset.
We obtained the energy demand data collected by the Korea
Electric Power Corporation (KEPCO) measured in 2017 in
Jeon-nam, Korea, provided for research purposes only [14].
It is household power consumption data collected every
15 minutes from January to December. The AMI dataset con-
sists of datasets of more than 50 energy subscribers created
every 15 minutes with 24/7. Each customer sends more than
30,000 data to the energy analytics platform on the edge
cloud system. The system monitors the sensor data stream
for predicting future power demand.

However, missing data was observed in AMI data due to
incomplete infrastructures such as harsh working conditions,
imperfect communication signals, and device failure, which
causes prediction errors in the energy planning model [34].
Various algorithms have been proposed to solve the missing
data problem using interpolation [35], principal component
analysis (PCA) [36] and k-NN [37] methods. In addtion,
deep neural network based imputation schemes have been
proposed recently, named Generative Adversarial Imputa-
tion Network (GAIN) [38]. In this article, we use quadratic
interpolation model [35] on AMI dataset for missing data
imputation.

3) CNN-LSTM MODEL USED FOR EXPERIMENTS
In this experiment, we used the Convolutional Neural Net-
work Long Short-term Memory (CNN-LSTM) model for the
energy demand prediction scenario. The CNN-LSTM model
was initially proposed as a Long-term Recurrent Convolu-
tional Network (LRCN) to process visual recognition for

FIGURE 8. Structure of CNN-LSTM Model used in experiments.

images and videos [39]. The proposed LRCN was config-
ured with the sequential combination of CNN and LSTM
model. The CNN offered superior performance in structural
or spatial feature extraction and robust to noise. On the other
hand, the LSTM can model complex temporal dynamics
with variable-length inputs. Indeed, the LRCNmodel showed
a deep understanding of spatial and temporal information
embedded in the visual dataset and was evaluated to have an
excellent performance on visual recognition applications.

Furthermore, in paper [40], they proposed a particulate
matter forecasting model in the smart city based on CNN-
LSTM. For time-series sequence data as well as visual
data, CNN-LSTM extracted structural features from the
arrangement of lookback data and showed high prediction
performance.

In paper [4], they proposed a CNN-LSTMmodel for robust
and efficient forecasting of energy consumption. Similarly,
the CNN-LSTM model showed excellent performance on
power consumption prediction than other machine learning
methods with low fluctuation. For the experimental dataset,
we configured the model parameters of the input dimension
of the Conv1D layer and the output dimension of the LSTM
layer.We configured the input dimension as 36 and the output
dimension as 1. A stride of the pooling layer can affect the
size of the model, and stride in the used model is 2. The
number of parameters in the model used for evaluation was
24,267 parameters, and all of these parameters are trainable.
The number of parameters affected model storage operation
called deployment overhead because the more significant
amount of parameters, requiresmorememory and longer time
for memory read and write.

To implement AMI demand prediction module on FPGA,
we first implemented each layer (convolution layer, fully
connected layer) to kernels with the baseline model of CNN
implementation in FPGA [41]. Through the High Level
Synthesis (HLS) tool provided by Intel Altera SDK for
OpenCL, we compiled the raw kernel(.cl) to the synthesized
bitstreams (.aocx) with the compiling tool. We implemented
the host side code in C++ to load the binary program of
the compiled kernels. Logic utilization on Combinational
ALUTs, Memory ALUTs, Logic registers or Dedicated logic
registers was 65,026/427,200 (15%) and Memory bits is
1,722,512/55,562,240 (31%). It’s power consumption was
measured as 2W. The LSTM layer is implemented on both
CPU and GPU for the compatibility. We measured two kinds
of execution times, the layer execution time and the kernel
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execution time. The layer execution time is measured from
the host code, and kernel execution time is measured by
detecting the OpenCL kernel’s start and end event. And for
the GPU, we measured execution time for Conv, LSTM and
FC layers. To implement CNN-LSTM on GPU, we imple-
mented each layer using Tensorflow. The execution time is
measured using the profiler provided by Tensorflow.

B. PERFORMANCE METRICS FOR EVALUATION
Themain goal of the energy service system is to use streaming
data to update learning models to more accurately predict
future energy demand and supply for providing a stable
energy supply and save energy costs. As described in section
4.1.2, the household energy consumption data in type of AMI
is used as a experimental data set. Performance is evaluated
in terms of the accuracy of the trained model and the training
time for the newly arrived data. In detail, the accuracy is
measured by the Root Mean Squared Error (RMSE) at a
given time, and also the standard deviation of the RMSE
observed so far is measured to see whether the trained model
provides a stable prediction without the risk of changes in
incoming data distribution. The higher the RMSE on unseen
data, the more accurately the model used for serving predicts.
On the other hand, training time is evaluated to measure
the execution time of the proposed system. Shorter training
time save computation cost on edge cloud, means the system
spends less time and capacity allows to reduce computing
resources.

1) PREDICTION ERROR (RMSE)
RMSE is a validation metric which indicates the the differ-
ence between an estimated value or a value predicted by a
model and observed in a real environment. For the i-th trained
model Mi, the prediction function FMi (X ) predict Y on i-th
set of stream data instances di. Then, the RMSEi is denoted
to Eq. (32). √∑

X ,Y∈di Y − FMi (X )

|di|
(32)

In addition, to investigate the degree of prediction accuracy
over the entire dataset, we define the average RMSE as the
mean value of RMSE for the variable i. Here we evaluate
average RMSE in the training loss and model score. Training
loss is referred as loss of predictive feature for instances right
next to training batch instances, and Model score is referred
as predictive performance for future instances (e.g. validation
dataset). We also compared the inference error, which is the
accuracy of energy services for users.

2) AVERAGE TRAINING TIME
Large amount of computational resources are required while
training the DL model. The objective is to computing the
parameters of the learning model and achieve it for a
short time period with efficient computing configuration.
Therefore, to evaluate training time efficiency, we define a

experimental metric of throughput as the total number of pro-
cessing instances per training time for the same input dataset.

AverageTrainingTime =
τi

bi
, (33)

where τi is the time interval of two consecutive updates i and
i− 1.

C. EXPERIMENTAL RESULTS
To assess the accuracy of the proposed scheme, household
energy consumption datawas used. The effect of the proposed
batch size adjustment and scaling of the number of epochs
on the prediction accuracy was assessed in terms of RMSE.
The model with the lower RMSE provides precise prediction.
The number of training instances and the number of epochs
were determined based on detected degree of concept drift,
profiled results such as hardware capacity, and the flow rate
of input data streams. The experimental results showed the
effectiveness of batch size adjustment and scaling of the
number of epochs.

In experiment 1, we compared the run-time accuracy per-
formance of the proposed scheme with that of the continuum
scheme [7] in a cluster profiled as θ = (0.0001, 0.09) with
λ = 340. Figure 9 (a) shows the inference loss performance
of the proposed and continuum schemes with the parameter
r= 1 and r= 2, respectively. Figure 9 (b) shows the inference
loss performance of the proposed and continuum schemes
with parameter r= 4 and r= 8, respectively. Because the exe-
cution time of each iteration varies according to the workload
size (batch size, epoch), each time step is different. The exper-
iments were conducted until both results showed convergence
of model training. Because there were missing data in the
dataset and there was multi-user class data (two user data),
there was fluctuation of loss during training. Although the
proposed scheme showed a large fluctuation in performance,
it showed fast convergence of the CNN-LSTMmodel used for
experiments, and it achieved good performance on average
when we applied the retraining scheme with scheduling
algorithm 1. Because Eq. (17) was designed for low recency
and short-term instability of the model, which determines the
performance of the trained model, the result showed a better
convergence rate for the case of concept drift and showed
stability for non-concept drift cases. For the proposed scheme
and compared Continuum schemes with various parameters
(r = 1, 2, 4, 8), inference loss was evaluated as 0.0630,
0.0744, 0.0755, 0.0810, and 0.0860 on average, respectively.
Through the empirical evaluation, it was hard to find the
best r value for continuum. Therefore, to figure out the
requirements of the parameter variance, we conducted an
additional experiment. The proposed scheme showed fast
convergence of the model for concept drift. It also showed
smaller loss on average. In addition, for the overlapped arrival
of multi-user class data, (two user data), there were class-
wise concept drift, known as skewed distribution, is occurred
while training proceeded. In the same environment, inference
loss was evaluated as 0.0729, 0.0669, 0.0659, 0.0885 and
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FIGURE 9. Exp 1 - Performance comparison of accuracy on the proposed and continuum scheme in cluster profiled as θ = (0.0001,0.09)
with λ = 340. Workload of training requests arrives in an exponential distribution of 340 tasks/sec. Each users send energy demand data
(AMI class 1, 2) sequentially (Energy demand data are not sorted by datetime). Method: proposed scheme, and continuum scheme with
various parameters (r=1, 2, 4, 8) (a) Prediction Error of Inference Performance of proposed and con(r=1, r=2) schemes (b) Prediction Error
of Inference Performance of proposed and con(r=4, r=8) schemes (result of the proposed scheme is plotted with red color).

FIGURE 10. Exp 2 - Performance comparison of accuracy in form of CDF on the proposed and continuum scheme in cluster profiled as
θ = (0.0001,0.09) with λ = 340. Workload of training requests arrives in an exponential distribution of 340 tasks/sec. (a) Each users send
energy demand data (AMI class 1, 2) sequentially (b) Two users continuously send energy demand data (AMI class 1, 2) at the same time
(Energy demand data are sorted by datetime). Method: proposed scheme, and continuum scheme with various parameters (r=2, 4, 8, 16)
(result of the proposed scheme is plotted with red color).

0.0702 in average respectively for comparison schemes. For
concurrent user input for the multiple data, the proposed
scheme incurs large training loss. From the large amount of
concept drift, the proposed scheme tries to continuously fit
into newly arrived data. It seems that missing of convergence
result in low test loss performance. In this case, user-wise
model management in the Velox framework [17] could be
very helpful to enhance accuracy performance.

In experiment 2, we performed statistical analysis of pro-
posed scheme in plotting of Cumulative distribution func-
tion (CDF) as shown in Figure 10. Figure 10 (a) shows
the inference loss performance of the proposed and contin-
uum schemes for the sequential arrival of multi-user class
data. Figure 10 (b) shows the inference loss performance
of the proposed and continuum schemes for the overlapped
arrival of multi-user class data. The CDF curve of infer-
ence loss showed higher degree of convergence on CNN-
LSTM model for the sequential arrival case. As mentioned
in experiment 1, class-wise concept drift problem disturbed
model convergence result in low accuracy. For the both cases,
the low degree of inference loss were mostly observed in the

CDF curve of the proposed scheme. For the sequential input
case, the performance of proposed scheme showed almost
top score. In addition, with its dynamic scheduling property,
it can also be considered a general model with relatively
low bias. Even for the overlapped arrival case, it showed
good performance which was less accurate then conn (r=16)
for entire domain and less accurate then conn (r=2) for
RMSE < 0.6 domain. It means the proposed framework is
more vulnerable to the class-wise concept drift from the side-
effect of scheduling dynamicity.

In experiment 3, with the workload of training requests
arriving in an exponential distribution of 340 tasks/sec,
we measured the RMSE for training loss, inference
loss, and model scores by applying various incremental
learning solvers related to batch size allocation for all
training iterations. As seen in Figure 11, we used different cat-
egories of user datasets in the case that each user sends energy
demand data (AMI class 1, 2) sequentially (energy demand
data are not sorted according to date and time). Continuum
schemes with various parameters (r = 2, 4, 8, 16, 32, 64)
were evaluated according to the test dataset after training was
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FIGURE 11. Exp 3 - Performance comparison of AMI prediction accuracy on inference loss (RMSE), training loss (MAE) and model
score (RMSE) of adaptive incremental deep learning scheme in log scale and multi parameter configured continuum algorithm on
difference characteristic class of incoming dataset (a) Each users send energy demand data (AMI class 1, 2) sequentially (b) Two users
continuously send energy demand data (AMI class 1, 2) at the same time. (x-axis is the target schemes to be compared).

finished with the given dataset. The loss value for training,
inference, and model scores were measured by applying var-
ious incremental learning solvers. The experiments showed
that, although the RMSE of the proposed scheme was eval-
uated on various data sets, it showed comparatively good
performance in all cases for inference loss, training loss and
test loss. The proposed scheme showed excellent results in
comparison to the other static configurations (variance in r).
While it did not always produce the best result, adaptability
has the advantage of allowing balanced performance in many
aspects. Notably, the proposed model achieved good perfor-
mance for the model score, which means that the proposed
scheme is robust to class-wise concept drift.

In Experiment 4, to evaluate the computational perfor-
mance of the proposed adaptive batch allocation scheme,
we measured the average training time and queue length
according to the progress of learning in a scenario in which
two users send energy demand data (AMI class 1, 2) con-
tinuously. As shown in Figure 12 (a), the proposed scheme
achieves lower average training time performance than com-
parison models (continuum) with various parameter config-
urations (r = 1, r = 2, r = 4, r = 8, r = 16, r = 32).
The average training times spent in learning the same
amount of input data were 0.0029243, 0.0116425, 0.0058195,
and 0.0029366 second/instance, respectively, for proposed,
con(r = 1), con(r= 2), conn(r = others) schemes. The speed
gain term allows the batch size to be increased to minimize
the time spent for initialization and operational overhead. If
θproc is the dominant parameter, the influence of θconst on the
execution time is relatively reduced, allowing us to update the
model more often. However, according to the actual device
profile, theta is measured at a non-negligible value, so the cost
reduction term is important for optimization of the execution
time through batch allocation. Although various performance
indicators must be considered in combination, we confirmed
that our proposed method is effective for optimizing the
execution time.

In addition, the queue stability conditions in Figure 12 (b)
provide reliable queue management without queue over-
flow problems and coordinate the best epoch for training.

FIGURE 12. Exp 4 - Performance comparison of processing time on the
proposed and continnum scheme in cluster profiled as θ = (0.0001,0.09)
with λ = 340 (x-axis is training timestamp in minutes, qs refers to queue
stability in Eq. (15)) (a) Average training time of performance of
proposed, continuum scheme with various parameter setting over entire
dataset training (b) Measurement of queue length for the proposed and
continuum scheme to evaluate effectiveness of queue stability condition.

This means that queue stability status should reserve as much
time as possible to avoid exceeding specific training dead-
lines in every iteration. Queue stability conditions reserve as
much time as possible without exceeding specific training
deadlines for every iteration. As a result, there may be more
ways to allocate batches and epochs in various combinations.
Although the solution space is large for the proposed adaptive
incremental deep learning scheme, relatively robust hyperpa-
rameters can be found for various concept drifts.

In Experiment 5, through the acceleration scheme of
FPGU+GPU scheduling and implementation of FPGA logic
development for the convolution layer, we assessed the pro-
cessing time performance with respect to an inference task.
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FIGURE 13. Exp 5 - Performance comparison of processing time on
FPGA+GPU hybrid and GPU driven scheduling scheme with
λ = 340(x-axis is training timestamp in minutes).

Figure 13 shows a comparison of the average iteration times
with hybrid scheduling and GPU-oriented scheduling. From
the profile result, 31 times acceleration of the processing time
was achieved through the FPGA+GPU hybrid scheduling for
the convolution layer. Because of the excellent FPGA perfor-
mance on convolution layer processing, the results shows that
the hybrid scheduling scheme has achieves about 1.2 times
acceleration of the iteration time.

VII. CONCLUSION
In this article to accelerate the deployment procedure
of a deep neural network after model training, we pro-
posed an accelerated edge cloud system for energy data
stream processing based on an adaptive incremental deep
learning scheme. The proposed system is a real-time train-
ing/inference system that deploys AMI data through dis-
tributed edge computing. As the volume of data increases
and models become more complex, a faster training method
is required to process energy data streams. We propose an
acceleration scheme with an adaptive incremental learn-
ing solver. For incremental deep learning, it is essential to
determine the term of the retraining time to improve data
incorporation latency, which determines the mini-batch with
the best training time to update the model. We proposed a
multi-criteria utility function for batch size and epoch. Also,
we proposed a heuristic to find a multi-criteria solution of the
cost function with the gradient descent method (sub-optimal).
It was empirically shown that it converges to local-minima
with only 5 steps on average. In addition, a resource-
scheduling scheme manages various accelerator resources
to accelerate deep-learning processing while minimizing
the computational cost. When adaptive incremental deep
learning sends a DL task to the resource scheduler, it is
able to accelerate DL task processing using heterogeneous
accelerators. Furthermore, with a deadline-constrained DL
pipeline scheduling scheme, the execution time of sub-
tasks is reserved in a sub-deadline. As a result, through the
adaptive incremental learning and accelerated edge cloud,
we can expect increment of the processing time of energy
stream data processing. To evaluate the proposed system,

we implemented an accelerated DL cluster stream data pro-
cessing system based on the incremental learning scheme.
Also, we use a real dataset as the stream benchmark data
on user energy demands with the AMI data of more than
50 subscribers. The experimental results showed that our
method achieves good performance with adaptive batch size
and epoch with incremental learning while guaranteeing a
low inference loss, a high model score, and queue stabil-
ity with cost-efficient processing. Several experiments were
conducted, which demonstrated that the proposed incremen-
tal deep-learning scheme quickly accepted concept drift in
diverse data patterns with 2 times acceleration of execution
time when we conducted a comparison of the elapsed time
to reach convergence of training. It also provides real-time
model updating, although it loses a little accuracy regard-
ing sub-optimization in the demand prediction model. In
addition, heterogeneous accelerator (FPGU, GPU) resource
scheduling through layer partitioning in the edge cloud shows
that the performance of the CNN-LSTMmodel for AMI data
processing can be improved. Processing time is 31 times
faster for FPGA+GPU hybrid scheduling in the convolution
layer, and for the entire iteration time, 1.2 times processing
time acceleration was achieved. Through the proposed frame-
work, computation of time-critical task for real-time energy
analysis with high level accuracy is achieved, result in low
risk service of demand prediction and power generation plan.
In addition, through the sophisticated incremental learning,
low cost training is available.
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