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SUPA: A Single Unified Read-Write Buffer and

Pattern-Change-Aware FTL for the High Performance

of Multi-Channel SSD

DONGJIN KIM, KYU HO PARK, and CHAN-HYUN YOUN, KAIST

To design the write buffer and flash translation layer (FTL) for a solid-state drive (SSD), previous studies

have tried to increase overall SSD performance by parallel I/O and garbage collection overhead reduction.

Recent works have proposed pattern-based managements, which uses the request size and read- or write-

intensiveness to apply different policies to each type of data. In our observation, the locations of read and

write requests are closely related, and the pattern of each type of data can be changed. In this work, we propose

SUPA, a single unified read-write buffer and pattern-change-aware FTL on multi-channel SSD architecture.

To increase both read and write hit ratios on the buffer based on locality, we use a single unified read-write

buffer for both clean and dirty blocks. With proposed buffer, we can increase buffer hit ratio up to 8.0% and

reduce 33.6% and 7.5% of read and write latencies, respectively. To handle pattern-changed blocks, we add a

pattern handler between the buffer and the FTL, which monitors channel status and handles data by applying

one of the two different policies according to the pattern changes. With pattern change handling process, we

can reduce 1.0% and 15.4% of read and write latencies, respectively. In total, our evaluations show that SUPA

can get up to 2.0 and 3.9 times less read and write latency, respectively, without loss of lifetime in comparison

to previous works.
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1 INTRODUCTION

There have been many studies to increase SSD performance through enhancement of the write
buffer (e.g., BPLRU [15] and CAVE [31]) and flash translation layer (FTL) (e.g., DFTL [9] and
MNK [38]). They have focused on increasing parallel I/O and reducing garbage collection (GC)
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overhead. By choosing appropriate locations among NAND flash memory banks, I/O performance
can be maximized due to parallel access. There have also been efforts to reduce GC overhead,
which is unavoidable to reuse some parts of an SSD.

In particular, recent works have classified patterns of blocks. Blocks requested from the host
are divided into sequential and random patterns, or read-intensive and write-intensive patterns.
Sequential and random classification is done based on the length of the write request. If the length
is long enough, then corresponding blocks are classified as sequential. If it is short, then corre-
sponding blocks are classified as random [30]. Read- or write-intensiveness is determined by the
number of continuous read requests between two write requests for a block. A block is classified as
a write-intensive block when a write request comes, and it becomes read-intensive if the enough
number of continuous read requests come before a new write request [4]. For blocks with different
patterns, different mapping policies are required. For sequential or read-intensive blocks, a map-
ping policy tries to increase parallel access by scattering pages or blocks into several channels. A
random or write-intensive block tries to reduce the GC overhead through allocation into a single
channel.

Beyond previous works, there are still issues regarding performance. First, read and write re-
quests have a locality that is closely related to the SSD performance. In a typical write buffer, read
requests for pages existing in the buffer can be directly returned to the host. For non-existing pages,
unlike write requests, pages read from NAND flash memory banks are not inserted into the buffer.
In real workloads, however, read and write requests can occur in the same location. Many pages
are accessed by both read and write requests while they stay in the buffer. Thus, handling read
and write requests in the same buffer can enhance not only read latency but also write latency.

Additionally, the pattern of a block can be changed between sequential and random or read-
intensive and write-intensive, and this can increase the I/O latency due to an old policy applica-
tion or a policy switching. When a block shows a pattern change, if an appropriate policy for an
incoming pattern is not applied, it will be handled by an old policy that can increase latencies;
handling sequential blocks with a single channel will suffer lack of parallel access, and handling
random blocks with multiple channels will cause more GC overhead. To avoid these overheads,
handling policy will switch to the policy based on an incoming pattern, and this switching can
incur extra read and write operations, since physical locations of requested pages will be changed.
Therefore, additional handling of blocks that show pattern change is needed.

Through these motivations, we propose a single unified read-write buffer and pattern-change-
aware FTL (SUPA) for high performance of multi-channel SSD architecture. The contributions of
this study are summarized in the following text.

• A single unified read-write buffer: Since read and write requests can occur in the same
location, SUPA uses a single unified read-write buffer. It manages both clean and dirty blocks
with a same priority in a single list. The buffer classifies patterns of blocks at just before a
victim selection process. Based on the length of contiguous read-accessed or write-accessed
pages, each block will be classified sequential or random for both read and write patterns.
Victims for read requests and write requests are selected in different ways based on the
properties of NAND flashes. When an eviction is occurred by a read miss, clean blocks are
selected first as victims not to increase the read latency by write operations. In case of an
eviction by a write miss, multiple clean and dirty victims will be selected to be written in
parallel. Compared to a typical write buffer, our buffer can increase the buffer hit ratios up
to 8.0%, and it can reduce 33.6% and 7.5% of read and write latencies, respectively.

• Pattern-change-aware FTL: To reduce the pattern change overheads, SUPA uses a layer
called a pattern handler. It receives access requests from the buffer, and sends actual read
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Fig. 1. Typical internal SSD architecture.

and write requests to FTLs. It also detects pattern changes and handle them. When a pattern
change is detected, the pattern handler induces pattern-changed data to be stored in a hybrid
of multiple FTL policies for different patterns, until there is no more pattern changes for the
corresponding blocks. By applying this scheme, we can get 1.0% and 15.4% read and write
latency reductions, respectively.

The remainder of this article is organized as follows. We give some background of typical SSDs
in Section 2. In Section 3, previous works related to the write buffer, FTL, and pattern-based man-
agement are introduced. Section 4 presents our motivations. The architecture and operation of
SUPA are described in detail in Section 5. We evaluate our work in Section 6, and we conclude in
Section 7.

2 BACKGROUND

Since SUPA enhances performance from the typical SSD, we briefly summarize basic structure and
operations of the typical SSD. It comprises three main parts as shown in Figure 1: a RAM write
buffer, an FTL, and multiple NAND flash memory banks [31, 38]. An SSD has an amount of DRAM
or SDRAM inside, and the write buffer and the FTL are located there.

The write buffer reduces small frequent write requests that can lead to increased high GC over-
head. Based on spatial and temporal localities, blocks for write requests are written and reordered
in the write buffer until they are evicted during the victim selection process, so the write buffer
can reduce latencies and GC overhead.

The FTL translates a logical address of a file system to a physical address of NAND flash memory.
It also re-allocates the new physical address for rewritten data to avoid in-place update that leads
to erase operation, and collects and erases invalid pages as a unit of block. This is called a garbage
collection (GC) operation. Since the time taken for the erase operation is strongly related to the
overall performance of the SSD, the FTL tries to reduce GC overhead. Additionally, because of the
limitation of NAND flash memory erase counts [6], the FTL makes a balance of the erase counts
of every NAND flash memory banks, which is called a wear-leveling.

NAND flash memory has non-volatility, reliability, low-power consumption, and shock resis-
tance characteristics [31]. It has multiple blocks, and each block contains multiple pages. Read and
write operations are done in page units, while erase operations are carried out in block units. For
the storage capacity increment, an SSD has multiple NAND flash memory banks categorized by
channel and way, and it is possible to access several banks in parallel.

ACM Transactions on Storage, Vol. 13, No. 4, Article 32. Publication date: November 2017.



32:4 D. Kim et al.

3 RELATED WORKS

SSDs have been widely researched in several areas. We briefly summarize previous works about
write buffer management, FTL algorithm, and pattern-based management of SSDs.

3.1 Write Buffer Management

Write buffer management schemes tried to reduce the actual write count on NAND flash memory.
CFLRU [32] evicts clean pages first. BPLRU [15] manages an LRU list as a unit of block. FAB [12],
REF [35], CLC [14], and BPAC [47] has been employed to take advantage of temporal and spatial
localities and consider NAND flash characteristics such as erase-before-write and block-level erase
to improve overall performance by reducing GC overhead.

For write buffers in a multi-channel architecture, MCA [36], GB [7], and FAP-LRU [43] try to
take advantages of multiple access. In CAVE [31], multiple victim blocks are selected, as many as
the number of channels, and each victim is allocated to a single channel.

Some works tried to use non-volatile memory in the write buffer area. In CBM’s buffer [44],
dirty data are stored in non-volatile memory area, while clean data are stored in DRAM area. Han
et al. [10] use hierarchical DRAM and non-volatile memory buffer to handle clean and dirty data.
From DRAM buffer, dirty data are evicted first, and they are sent to non-volatile memory area.
Evicted data from non-volatile memory are written in the flash area.

These buffering schemes can increase SSD performance. In SUPA, we try to get the better per-
formance with the single unified buffer for both read and write requests, based on a locality of
read and write requests.

3.2 FTL Algorithm

FTL algorithms are employed to overcome erase-before-write characteristics. LazyFTL [24] and
DFTL [9] use page-level mapping, which translates logical addresses to physical addresses as a unit
of page, and it requires a large mapping table. BAST [16], superblock [13], AFTL [46], SAST [27],
FAST [21], KAST [8], FASTer [23], and ADAPT [42] use combinations of page-level and block-
level mapping. They manage data blocks with block-level mapping and log blocks with page-level
mapping. These mapping policies can reduce GC overhead by storing updated data in log blocks.

For an FTL in a multi-channel architecture, MCSplit [17], SubGroup [29], and MAST [39] apply
hybrid mapping with striping to achieve I/O parallelism. MNK [38] can configure M, N, and K
for striping level, the number of data blocks in a group, and the number of log blocks in a group,
respectively. VBP-FAST [11] expands parallel I/O to all NAND flash level. DPA-FTL [19] stores
hot data in SLC and cold data in MLC. ASA-FTL [48] uses selective caching and sampling for hot
and cold separation. Parallel-DFTL [49] schedules address translation and data access operations
separately.

These FTLs can achieve GC overhead reduction and better wear-leveling through NAND flash
memory banks or channels. Additionally, pattern classification of blocks and the use of different
FTL configurations for each pattern will increase the efficiency of the FTL, which are described in
Section 3.3.

3.3 Pattern-Based Management of SSD

HSSD [5], LAST [20], CFTL [28], and WAFTL [45] separate hot and cold data, or random and
sequential data, and manage each pattern in different ways.

For multi-channel architecture, S-FTL [30] divides sequential and random blocks based on the
lengths of the write requests at the entrance of the write buffer, and it uses a different write buffer
and a different FTL for each pattern. Each block is stored in a single channel without page-level
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Fig. 2. Buffer types for both clean and dirty blocks.

striping, and multiple sequential blocks are grouped into a changed block to be written in parallel
channel.

BLAS [4] stores a block in a single channel first, and scatters the pages of that block into several
channels if that block is read-intensive or sequential. A block is classified as read-intensive when
continuous read requests come into that block, and a block is classified as write-intensive when
that block is evicted from the write buffer.

Pattern-based CAVE, a combination of the CAVE write buffer [31] and MNK FTL [38], can also
be used for pattern-based management. Based on the numbers of dirty pages, it classifies patterns
of blocks. A pattern of a block is classified as sequential if the block has a larger number of pages
than the threshold value, or it may be classified as random. Here, multiple victim blocks with
random patterns can be selected and a single channel is allocated to each block as CAVE. On the
other hand, a victim block with a sequential pattern is scattered over all channels with page-level
striping of MNK configuration.

These pattern-based managements can improve the performance of the conventional FTLs de-
scribed in Section 3.2. In SUPA, we additionally consider pattern changes between sequential and
random, or read-intensive and write-intensive.

4 MOTIVATION

Although previous works have improved SSD performance, there are issues for increasing the
performance. First, read requests can affect buffer management for increasing the buffer hit ratio
and the performance, based on a locality of read and write requests. Additionally, overhead can be
caused by blocks’ changing pattern.

4.1 Unified Read-Write Buffering

To manage the buffer for read and write requests, there are several types of buffer: a separated
buffer with two linked lists for clean and dirty blocks [44] (Figure 2(a)), a unified buffer with a
single linked list [32] (Figure 2(b)), or a combination of them. The dirty-only buffer [4, 30, 31],
which is a typical write buffer, can be treated as a special case of separated buffer in which buffer
size of clean blocks is zero.

Typical write buffers contain only dirty blocks for write requests, and clean blocks for read
requests are not inserted into the buffer. Clean blocks, however, are also closely related to the
buffer hit ratio and SSD performance. For read requests, since they should be returned directly
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Fig. 3. Co-hit ratios in the unified read-write buffer.

to the host while write requests can be handled in the background, clean block management can
increase the read performance.

For write requests, if clean and dirty blocks are independent, write hit ratio will be decreased,
since clean blocks will take buffer space of dirty blocks. In read SSD usage, however, read and
write requests can occur at the same pages, so read and write hit locations are dependent. Let us
define a co-hit as a read hit at an already written page in the buffer, or vice versa. Figure 3 shows
how many buffer hits occurred as co-hit for several workloads on the unified buffer. A trace-driven
simulator was used [31, 38, 39] with the 64MB unified read-write buffer and the workloads shown
in Table 4, which are described in Section 6.1. The sizes of a page and a block were 4 and 256KB,
respectively. Each workload had significant amounts of co-hits. On average, 52.3% of read hits
occurred at already written pages, and 24.0% of write hits occurred at already read pages. Due
to co-hits, if the buffer manages clean and dirty blocks together, it can find more accurate list of
recently or frequently accessed pages or blocks, and write hit ratios can be increased, since the
corresponding pages more likely exist in the buffer. Thus, we use a single unified read-write buffer
for both clean and dirty blocks. Additionally, we adopt different eviction policies for read and
write requests based on read and write properties of the NAND flash memory and multi-channel
parallelism.

4.2 Pattern Change Handling Overhead

The pattern-based management schemes shown in Section 3.3 handle different patterns by differ-
ent policies. The pattern of each block, however, can be changed depending on the workload. In
the user-level usage, when a file is deleted and a new file is written at the same location, or only
a part of a file is modified, corresponding blocks can have a new pattern. Some applications make
blocks suffer from frequent pattern changes. For a database application, for example, depending
on the query type, a pattern can be changed between sequential and random, or read-intensive
and write-intensive.

When the pattern of a block changes, additional overhead can be incurred by an old policy ap-
plication or a policy switching. When a pattern change occurs for a block, if that block remains
in the previous policy, it will be handled by an old policy. Handling sequential blocks with a sin-
gle channel will suffer lack of parallel access, and handling random blocks with multiple chan-
nels will cause more GC overhead. To use an appropriate policy for incoming pattern, switching
to a corresponding policy can incur extra read and write operations, since physical locations of

ACM Transactions on Storage, Vol. 13, No. 4, Article 32. Publication date: November 2017.



SUPA: A Single Unified Read-Write Buffer 32:7

Fig. 4. Pattern change ratios between sequential and random (pattern-based CAVE) and read- and write-

intensive (BLAS).

requested pages will be changed. Previous pattern-based managements, however, did not handle
this overhead.

Figure 4 shows how many pattern changes occurred in workloads, in the same environment as
Section 4.1. A pattern was classified when a block needed to be accessed in the FTL, which were
evicted blocks from the write buffer or blocks with buffer miss. Pattern classification thresholds
were 4 and 2 for sequential and random division, and read- and write-intensive division, respec-
tively. Here, pattern change includes both an old policy application and a policy switching. On
average, 16.6% and 10.4% of block accesses occur pattern change between sequential and random,
and read- and write-intensive, respectively. Based on these observations, therefore, we classified
both sequential and random patterns and read- and write-intensive patterns, and used different
handling policies for blocks that showed pattern change to reduce the overhead.

4.3 Summary

Through these motivations, read and write requests are handled in a unified buffer. We also han-
dle pattern changes both between sequential and random and between read-intensive and write-
intensive to reduce the policy switching overhead. Blocks showing pattern change are handled by
a hybrid allocation policy.

5 DESIGN OF SUPA

5.1 Overview

In this article, we propose SUPA, a single unified read-write buffer and pattern-change-aware FTL,
to enhance the performance of multi-channel SSD. Figure 5 shows the architecture of SUPA, which
includes a unified read-write buffer, a pattern handler, and FTL policies for page-level striping on
multiple channels and just single channel allocation. The buffer will classify patterns of blocks and
evict victims. The pattern handler will monitor pattern-changed blocks and handle them. Their
operations are summarized in the following text.

• Unified read-write buffer: Each I/O request from the host comes into the buffer. Since
locations of read and write requests are closely related, we manage both clean blocks and
dirty blocks within the single unified buffer. For both read and write requests, corresponding
blocks will be moved to MRU position, while read requests do not move corresponding
blocks in typical write buffers.
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Fig. 5. SUPA overview.

• Pattern classification: The buffer classifies patterns of blocks just before a victim selection
process. Each block will be classified between sequential and random for both read and write
patterns. For read pattern, if the length of contiguous read-accessed pages of a block is long
enough to take benefit from parallel access, that block will be classified as sequential, or
random if the length is short. Write pattern will be determined by the same manner with
write-accessed pages.

• Victim selection: Victims are selected in different ways for read and write requests, since
properties of read and write operation in the NAND flash memory are different. On a victim
selection for a read request, clean blocks will be selected first, since writing dirty victims
for read requests can increase the read latency. On a victim selection for a write request, it
first selects victim blocks as an amount of requested data and then selects additional victim
blocks if they can be written in parallel with other victims. Here, actual writing operations
in the NAND flash area will be done in background if flashes are not busy, or waiting time
can be occurred if they are busy.

• Pattern handler: Before victim blocks go into the FTL, the pattern handler, which is added
between the buffer and FTLs, checks whether there has been a pattern change or not. If
the current policy for the previous pattern and the new policy for the incoming pattern
are different, then a corresponding block is handled as a pattern-changed block. Blocks
without pattern change are sent to the FTL directly. For pattern-changed blocks, however,
the pattern handler applies a hybrid policy of previous and incoming patterns to them.
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Fig. 6. Buffer structure of SUPA with write and read flags.

• FTL: Two policies in the FTL are configured for patterns with different striping levels. A
multi-channel policy, MULTI, stores sequential or read-intensive blocks with page-level
striping for parallel access, while a single-channel policy, SINGLE, stores a single random or
write-intensive block in a single channel to decrease GC overhead. Pattern-changed blocks
are stored in a hybrid policy of MULTI and SINGLE. In the hybrid policy, incoming dirty
pages are stored in a new policy while others remain in a previous policy. If there are no
more pattern changes for those blocks, then all pages will be stored in a recent policy at
next GC process.

In the remaining parts of this section, components of SUPA are described in detail: the uni-
fied read-write buffer in Section 5.2, pattern classification in Section 5.3.1, victim selection in
Section 5.3.2 and 5.3.3, and the pattern handler and the FTL in Section 5.4.

5.2 Unified Read-Write Buffer

Since read and write hit locations are dependent on each other as described in Section 4.1, SUPA
uses a unified read-write buffer. Basically, blocks are managed by a block-level LRU policy [15],
because patterns are classified as a unit of block. Additionally, while blocks in the S-FTL [30] are
divided into sequential and random buffers, we do not divide them, since a pattern can also be
changed in the buffer. Here, pattern classification is not done at the buffer entrance but at the
eviction process.

Figure 6 shows the buffer structure. Like typical write buffers, all blocks in the buffer are man-
aged with single linked list. Each block manages its page slots with an internal linked list, and only
accessed pages occupy the buffer area. As shown in that figure, blocks A, B, C, and D occupy 4, 3,
3, and 2 pages of the buffer, respectively, which are the same numbers as their accessed pages. For
SUPA, it additionally manages a clean block list, which contains pointers of clean blocks for fast
clean block searching in the eviction process. For each page, two flags are added: a write flag and
a read flag. The write and read flags are set when a write and read request to the page has arrived,
respectively. Since only accessed pages can exist in the buffer, at least one of the flags of each page
should be set. In Figure 6, only read requests occur for pages in block B while only write requests
occur for pages in block D. In blocks A and C, both read and write requests occur for pages 1 and
10. These flags are cleared only when the block is evicted from the buffer. The flags will be used
in pattern classification process described in Section 5.3.1.

A typical write buffer and a unified read-write buffer handle write requests in the same man-
ner. For a write request, a corresponding block is moved or inserted to the most-recently-used
(MRU) position. On the other hand, two buffers handle read requests differently. For a read request,
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Fig. 7. Sequential and random pattern classification.

corresponding pages are returned first in both buffers, regardless of buffer hit or miss. In the unified
buffer, a corresponding block is moved or inserted to the MRU position as write request case, while
the typical write buffer does not change locations of blocks in the buffer. During these processes,
if there are not enough page slots for buffer miss cases, the buffer launches the victim selection
process with the eviction policy, and incoming pages will take possessions of the secured slots.

5.3 Victim Selection and Eviction of the Buffer

In the victim selection process, the patterns of blocks are classified. After this classification, one
or several blocks are evicted, and their pattern information and dirty pages are sent to the pattern
handler. Here, SUPA uses different victim selection policies for read and write requests, accord-
ing to the following reasons. At first, since write operations are slower than read operations in
the NAND flash memory [37], dirty victims for read requests can increase the read latency. Addi-
tionally, if there are only a few read hit counts or co-hit counts, write hit counts can be reduced.
This can happen depending on the workload or host-side buffer. Finally, parallel access should be
considered when dirty blocks are evicted.

5.3.1 Pattern Classification. Patterns are classified as sequential or random according to the
length of contiguous accessed pages. Figure 7(a) shows how sequential and random blocks are
classified. The write pattern of a block is determined based on the length of contiguous write flags.
If a block has more contiguous write flags than the threshold value (TH), then the write pattern
of that block is classified as sequential, or it is classified as random if the length is same or less.
The length of contiguous flags can be measured within the block (L), from previous block (LP),
or to next block (LN). Here, since accessing previous or next block in the NAND flash area takes
a lot of time, LP and LN are only measured if the corresponding blocks exist in the buffer. The
same policy will be used for read pattern with read flags. Here, we experimentally selected the
threshold value to minimize the read and write latencies, as it will be mentioned in Section 6.3.1.

Figure 7(b) shows pattern classification examples, where each block contains 8 pages and the
threshold value is 4. Block A has more flags than the threshold value, but it is classified as random
block. Since accessed pages are scattered within that block, its pattern is more close to random.
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Table 1. Pattern Classification

Write pattern

No write Ran. write Seq. write

Read

pattern

No read (WI) X RW SW

Ran. read (WI) RR RW-RR SW-RR

Seq. read (RI) SR RW-SR SW-SR

X, Cannot exist; WI, Write-Intensive; RI, Read-Intensive;

RW, Random Write; SW, Sequential Write;

RR, Random Read; SR, Sequential Read.

Block B and C are obviously random and sequential block, respectively. Block D has only two flags,
but it can be contiguous data from previous block (block C), so it is classified as sequential block.

To classify read-intensive and write-intensive blocks, we simply select blocks that have enough
read accessed pages regardless of write accessed pages, since they can take benefit from parallel
access from page-level striping. Finally, each block can have a pattern among 8 in Table 1, where
RW, SW, RR, and SR stand for random write, sequential write, random read, and sequential read,
respectively. Since not-accessed block cannot exist in the buffer, a pattern for blocks with no read
and no write access cannot occur, which is marked as X in the table. Here, SR, RW-SR, and SW-SR
will be treated as read-intensive blocks; otherwise, blocks are write-intensive except RR. Because
RR blocks have only a few accessed pages, they are not considered to read-intensive or write-
intensive. Based on this pattern classification, pattern changes are defined by the pattern handler
described in Section 5.4.

5.3.2 Victim Selection for Read Request. When an eviction from the buffer is needed to handle
an incoming read request, clean blocks are mainly selected. This prioritization can avoid writing
dirty victim blocks on the FTL for a read request. Additionally, since dirty blocks can stay in the
buffer, it can also prevent reduction of the write hit ratio caused by low read hit ratio or low co-hit
ratio. During the eviction, clean blocks are selected first until enough space is secured or there
are no more clean blocks. After the eviction of clean blocks, if there is enough space for incoming
pages, they occupy that space. If not, then one or some dirty blocks are selected near the LRU
position, whose the entire number of pages is just fit to the number of incoming pages. After an
eviction, dirty pages and the pattern information of victim blocks are sent to the pattern handler
so the data can be stored and the pattern change can be checked.

An example of victim selection for a read request is shown in Figure 8. If a read request for two
pages in block I comes, then block E will be selected, since it is a clean block and blocks H, G, and
F are dirty blocks. Here, because eviction of block E can provide enough space in the buffer, block
I can be inserted into the buffer. If block E is a dirty block, then block B will be evicted, which is
the next clean block.

5.3.3 Victim Selection for Write Request. On the victim selection for write requests, we select
both clean and dirty victim blocks. If clean blocks are mainly selected even for the write request,
then a probability to evict dirty blocks for read request can be increased, since only a few clean
blocks will remain. Additionally, for parallelized write, several dirty victim blocks can be selected
to allocate write operation to multiple channels. Here, we do not allocate blocks for a channel
without enough free blocks, since the garbage collection can delay entire write request handling. It
can also guarantee the write performance when single-channel writes delay multi-channel writes,
since multiple single-channel writes can also be done in parallel. The victim selection for the write
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Fig. 8. Victim selection for read requests.

requests consist of two steps. At the first step, it secures buffer space for a requested block. After,
it finds more victim blocks to be written in parallel.

In the first step, the channel status is obtained from the pattern handler, that is, the number of
parallel free blocks and garbage collection status. Then victims are selected from the LRU position
until there are enough pages for the incoming block. Here, since clean victim blocks do not need
an extra write operation, clean blocks are unconditionally selected. Dirty blocks are selected if
it can be written in parallel with other victim blocks. If a block is not located at any channel or
its all pages are re-written, then it takes a free block of any channel, since a new location in the
NAND flash memory should be determined. If not, then it takes a free block of the currently located
channel to prevent page migration among channels.

After the first step, additional victims can be selected. To avoid evicting a block near the MRU
position that can be accessed with higher probability than a block near the LRU position, we set the
search window. This window starts at LRU position and ends up at a location whose accumulative
buffer hit counts from the MRU position reaches to a specific portion of entire buffer hit counts; in
other words, the specific portion of buffer hits occur outside of the window. With this window, even
if all blocks in the window are evicted, most of buffer hits are still available with blocks that are
located outside of the window. We used 90% as the portion that the window size is large enough to
select multiple dirty victims with keeping a similar level of the buffer hit ratio in our evaluations.
Here, the end location of the window is re-calculated whenever an amount of requests comes
into the buffer. Within the window, additional dirty victims are selected if they can be written in
parallel with other victim blocks, in the same manner as the first step. However, clean blocks are
not selected as additional victims to avoid decrement of the read hit ratio. After the eviction, as in
the read request case, dirty pages and the pattern information of the victim blocks are sent to the
pattern handler. Here, if flash memories are not busy, actual writing operations in the NAND flash
area will be processed in the background. If they are busy for previous writing operations or GC,
then waiting time can be occurred.

Figure 9 shows an example of the victim selection for write request, with 4 channels, 4 pages in a
block, and a threshold value of 2. In Figure 9(a), at first, blocks H and G were selected as victims to
provide enough space for block I. As shown in Figure 9(b), block H, which is a random block, will
take a free block of channel 2 and block G, which is a sequential block, will take a free block of the
multi-channel policy. After that, one more sequential block can be allocated to the multi-channel
policy and two more random blocks can be allocated to channels 3 and 4 of the single-channel
policy, so the buffer will find the additional dirty victim blocks in the search window. In that figure,
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Fig. 9. Victim selection for write requests.

blocks F and D were selected as additional victim blocks and they will be allocated to channels 3
and 4. Here, block E was not selected as an additional victim, since it is a clean block.

Among the previous works, CFLRU [32] also manages clean and dirty pages in a single buffer,
which targets the buffer cache of host file system or swap system. It uses page-level LRU, and
clean pages will always be evicted first in the window. On the other hand, the SUPA’s buffer is
designed for internal buffer of an SSD with consideration of the pattern-based management on
the FTL. It can select both clean and dirty victim blocks depending on the request type, due to
properties of read and write operations of the NAND flash memories. In this process, we ap-
plied the new victim selection methods. For read request, clean blocks will be evicted first, but
for write request, based on the preceding described algorithm, it selects multiple clean and dirty
victim blocks based on channel status and pattern for better parallel access and pattern-based
management.

Additionally, a buffer of Han et al. [10] uses hierarchical DRAM and non-volatile memory buffer
to handle clean and dirty data. From DRAM buffer, dirty data are first moved into non-volatile
memory for reliability. In SUPA, since we consider DRAM-only buffers, we concentrated on se-
lecting clean victim blocks more than dirty blocks for performance improvement.

5.4 Pattern Handler and FTL

5.4.1 Basic Operation of FTL. Each request from the buffer is handled by the pattern handler
before it goes to the FTL. The pattern handler monitors the statuses of channels in terms of garbage
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Fig. 10. An architecture of the pattern handler and the FTL.

collections and the number of free blocks. It also allocates blocks to the appropriate channels and
banks of the FTL depending on the victim selection results from the buffer. Each FTL policy has
an amount of data blocks and log blocks. Data blocks are basic physical locations of logical blocks
with block-level mapping. Updated pages are written in log blocks with page-level mapping. In
the GC process, valid pages of data blocks and log blocks will be moved to new blocks, and those
blocks will become new data blocks.

Figure 10 shows the architecture of the pattern handler and the FTL. Here, we use two differ-
ent FTL policies: a multi-channel policy, MULTI, and a single-channel policy, SINGLE. MULTI is
configured for full-channel page-level striping, while SINGLE is configured for a single channel
per block. We use FTL policies of MNK [38], but other FTL policy can be adopted if it is based
on a hybrid mapping policy that consists of data blocks and log blocks. The pattern handler man-
ages free block allocations and garbage collections on both policies, since arbitrary management
in each policy can interfere in each other. Additionally, there exists a hybrid policy, HYBRID. This
policy consists of data blocks in MULTI and log blocks in SINGLE. Here, HYBRID does not use
an independent NAND area, but just takes some parts of MULTI or SINGLE, to avoid additional
policy switching overheads from HYBRID to one of MULTI and SINGLE, or vice versa. For pattern-
changed blocks, updated pages will be written in the new policy, while other pages are remaining
in the old policy. Here, valid pages can be found either MULTI or SINGLE, but not both. Blocks
stored in HYBRID stay there if their patterns change repeatedly. If their patterns do not change
any longer, then they will be located at the NAND area of corresponding policy.

5.4.2 Pattern Change Detection and Handling. The pattern handler detects pattern changes de-
pending on the policy decision table as shown in Table 2, where MULTI, SINGLE, and HYBRID are
the multi-channel policy, the single-channel policy, and the hybrid policy, respectively, and SW,
RW, SR, and RR are sequential write, random write, sequential read, and random read patterns,
respectively. Here, HYBRID stores pattern-changed blocks. For an incoming block, the pattern
handler refers to its current policy and the incoming pattern, and a block will be identified as a
pattern-changed block if policy switching should occur.

A block that has not been previously written is denoted as “None” in the table, and it will fol-
low a policy of its write pattern except RW-SR. For RW-SR, since there is a policy collision be-
tween MULTI for read-intensive and SINGLE for random write, the pattern handler identifies it as
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Table 2. FTL Policy Decision Table

Current policy Incoming pattern New policy Pattern changed

None

SW, SW-SR, SW-RR MULTI No

RW, RW-RR SINGLE No

RW-SR HYBRID Yes

MULTI
SW, SR, RR, SW-SR, SW-RR MULTI No

RW, RW-SR, RW-RR HYBRID Yes

SINGLE
RW, RR, RW-RR SINGLE No

SW, SR, SW-SR, SW-RR, RW-SR HYBRID Yes

HYBRID Any pattern HYBRID Yes

MULTI, multi-channel policy; SINGLE, single-channel policy;

HYBRID, data blocks in MULTI and log blocks in SINGLE;

SW, Sequential Write; RW, Random Write;

SR, Sequential Read; RR, Random Read.

pattern-changed block. When a block is previously written in MULTI, if the incoming write pattern
is random, it is identified as pattern-changed. For a block previously written in SINGLE, if the in-
coming write pattern is sequential or it is a read-intensive block, it is identified as pattern-changed.
If a block is already located at HYBRID, then regardless of the incoming pattern, it remains as a
pattern-changed block.

Blocks without pattern change are stored in MULTI or SINGLE as decided in victim selec-
tion process. To provide parallel access to multiple channels, sequential blocks and read-intensive
blocks will be stored in MULTI. To reduce GC overhead from small size updates, random write-
intensive blocks will be stored in SINGLE. If a pattern change is detected for a block, then the
pattern handler inserts a logical block number (LBN) and the incoming pattern of that block in
the pattern-changed block list (PCBL). While LBNs are located in PCBL, corresponding blocks use
data blocks in MULTI and log blocks in SINGLE.

In the GC process, the pattern handler checks whether there are more pattern changes on each
block or not. For a block in the PCBL, if the policy of recent two patterns is consistently either
MULTI or SINGLE, this block will follow the corresponding policy, and it will be removed from the
PCBL. If not, then all of the valid pages will be moved to MULTI where their data block is located,
without removal from the PCBL.

Figure 11 shows how pattern-changed blocks are managed in the four-channel architecture.
Here, we assume that each block contains four pages and the threshold value dividing sequential
and random is 2. Figure 11(a) shows pattern-changed block mapping policies. When random write
(LPNs 0 and 1) occurred for pages in MULTI (LPNs from 0 to 3), only updated pages will be stored
in SINGLE to reduce garbage collection overhead on MULTI. When sequential write (LPNs from 5
to 7) occurred for pages in SINGLE (LPNs from 4 to 5), only update pages will be stored in MULTI
to increase parallel access and reduce rewrite of sequential block of BLAS. When read-intensive
occurred for pages in SINGLE (LPNs 8 and 9), block information is added to pattern-changed block
list, and the pattern handler waits until next eviction of that block. If next pattern of that block is
write-only, then updated pages will be stored in the policy of write pattern. If next pattern contains
read accesses, then accessed pages will be stored in MULTI. In this progress, we can reduce rewrite
of BLAS and increase parallel access.

Figure 11(b) shows garbage collection policies for pattern-changed blocks. For block A (LPNs
from 0 to 3), if there are still pattern changes, a new data block is located at MULTI and the block
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Fig. 11. Pattern-changed block management policy.

A still remains in the pattern-changed block list. For block B (LPNs from 5 to 7), if patterns for the
same policy come continuously, all pages of the block B will be moved to corresponding policy,
and its information will be removed from the pattern-changed block list.

From the previous pattern-based managements, SUPA can improve the performance. Unlike
S-FTL [30], SUPA uses page-level striping for sequential or read-intensive blocks, and parallel
access can occur for even single block. Compare to BLAS [4], SUPA can reduce some rewrite
operations. In SUPA, pages with sequential write pattern will be directly scattered in multiple
channels, while those pages should be rewritten in BLAS. Additionally, due to this direct scat-
tering, when the pattern of the corresponding block is changed to read-intensive, pages also do
not need rewrite operations. Compare to pattern-based CAVE [31, 38], since SUPA scatters pages
of read-intensive blocks while pattern-based CAVE only considers write pattern, more parallel
accesses for read requests can be provided. When write pattern is changed between sequential
and random, HYBRID can manage policy switching between SINGLE and MULTI.

In terms of the lifetime, pattern-based managements including SUPA increase erase counts and
valid page copy counts coming from switching policies. In case of SUPA, since it has less extra
writes of switching policies, its erase count and valid page copy count will be somewhat reduced,
compared to other pattern-based managements. The wear-leveling, however, is not much affected,
since it is closely related to FTL policies. Even though the total write counts are increased, selecting
appropriate physical location will stabilize the wear-leveling.

6 EVALUATION

6.1 Experimental Environment

In this section, we present the effects of SUPA through experiments. We first compared SUPA
simulator with FlashSim [18] and a real SSD device (Samsung’s SSD 850 PRO) [34] to validate the
results. We then identified the effects of changing parameters. After that, we compared SUPA with
S-FTL [30], BLAS [4], and pattern-based CAVE [31, 38] in terms of latency and lifetime.
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Table 3. Simulation Parameters

Simulation parameter Value

SSD size 80GB
The number of channels 8
The number of ways 4/channel
Buffer size 64MB
Page size 4KB
Block size 256KB
Log block portion 5%
Read latency 60us/page
Write latency 800us/page
Erase latency 1.5ms/block
Threshold to divide sequential and random 4 pages
Re-calculation period of searching window 10,000 I/O requests

We implemented SUPA and comparison works in a trace-driven simulator [31, 38, 39] for evalu-
ations. The simulation parameters are given in Table 3. The total SSD size was set to 80GB, and the
parallel NAND flash memory modules were configured with eight-channel and four-way architec-
ture [31, 38]. The size of each page was 4KB, and the size of each block was 256KB; a single block
contained 64 pages. The log block portion was set to 0.05. The specifications of each NAND flash
memory were set as Samsung’s MLC NAND flash memory [33]. The times taken in the NAND flash
memory for read, write, and erase were set to 60us, 800us, and 1.5ms, respectively. The threshold
value to divide sequential and random blocks was set to four pages. For the victim selection pro-
cess of SUPA, the search window size was re-calculated when 10,000 I/O requests had come into
the buffer.

Several disk I/O workload traces were used for evaluations. OLTP and WEBENGINE traces were
made available courtesy of Ken Bates from HP, Bruce McNutt from IBM, and the Storage Perfor-
mance Council [41]. The OLTP trace was extracted from OLTP applications running at two large
financial institutions, and the WEBENGINE trace from a web search engine. The DBT2 trace was
extracted by running the DBT2 benchmark tool for 2h [40] on MySQL 14.14 with 20 connections,
100 warehouses, and 50 terminals per warehouse. The GENERAL, SYSMARK, WEB, and MOV
traces were obtained from a Microsoft Windows-based laptop computer [22]. These show typi-
cal PC usages: GENERAL for a 5-day-long general PC usage including office works, web surfing,
and installations; SYSMARK for SYSmark 2007 Preview benchmark; WEB for one-day web surf-
ing; and MOV for sequential movie files writing. RANWRITE is a synthesized workload from the
IOZone benchmark [26]. Its several random writes are combined with sizes from 1 to 16KB. Here,
WEBENGINE, MOV, and RANWRITE were used for the evaluations of extreme cases. Details of
those traces are presented in Table 4, where volume sizes are measured by the maximum logical
address. Here, OLTP and DBT2 have larger volume sizes than the simulated SSD, so we assumed
that overflowed addresses are mapped to never-accessed addresses.

For performance metrics, we evaluated the read and write latencies and lifetime represented by
erase counts, valid page copy counts, and wear-leveling of erase counts among channels. Using
these metrics, we compared our work with other pattern-based managements.

6.2 Simulator Validation

Since 2011, we have been developing our own SSD simulator [31, 38, 39]. For SUPA, we added
a pattern handler and modified buffer and FTL policies. We compared our results for a set of
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Table 4. Workload Traces Specification

Request Write Total read / Space Volume Avg. read /

Workload counts ratio (%) write size (GB) utility (GB) size (GB) write size (KB)

OLTP 5,334,987 76.83 4.45 / 20.61 0.54 644.53 3.78 / 5.27

DBT2 416,991 69.00 4.54 / 7.56 4.04 114.35 36.84 / 27.54

GENERAL 1,029,052 70.08 9.26 / 15.17 7.12 18.34 31.54 / 22.06

SYSMARK 150,092 62.39 2.65 / 4.10 5.39 31.94 49.16 / 45.87

WEB 200,605 76.92 0.94 / 3.57 2.17 16.83 21.37 / 24.25

WEBENGINE 4,579,809 0.02 65.82 / 0.01 6.46 16.67 15.07 / 8.10

MOV 430,024 98.86 0.29 / 26.74 7.85 8.00 62.69 / 65.95

RANWRITE 2,000,000 100.00 0.00 / 19.06 2.01 2.01 0.00 / 9.99

Fig. 12. Structures of SSD simulators.

workloads with the outputs using a well-known simulator and a real SSD device, to check how
similar our simulator operates as other simulator and a real device.

DiskSim [3] with SSD extension [25] and FlashSim [2, 18] are well-known SSD simulators.
Figures 12(a), 12(b), and 12(c) show the structures of DiskSim with SSD extension, FlashSim, and
SUPA simulator, respectively. In DiskSim with SSD extension, the NAND flash memory layer sup-
ports multiple NAND flash memories for parallel access, which can be configured by the numbers
of gangs, elements, packages, and planes. The FTL layer supports a policy called OSR, which op-
erates page-level mapping policy. In FlashSim, parallel NAND flash memories are supported in
terms of packages, dies, and planes. The FTL layer supports configurable mapping policy, garbage
collection policy, and wear-leveling policy. Here, for mapping policies, the page-level mapping [1],
BAST [16], FAST [21], and DFTL [9] are implemented on it.

SUPA simulator has similar NAND flash memory layer and FTL layer as other simulators. Mul-
tiple NAND flash memories can be configured by the numbers of channels and ways. For FTL
management policies, the page-level mapping [1], MAST [39], and MNK [38] are implemented on
it. In the SUPA simulator, however, there exist pattern handler and buffer layer on top of NAND
flash memory and FTL layers. These layers simulate operations of pattern handler and buffer de-
scribed in Section 5.

In the validation, we measured read and write performances of FlashSim and SUPA simula-
tor in terms of bandwidth and latency. Since the FTL policies of SUPA are based on hybrid-
mapping policy, we compare the SUPA simulator with FlashSim that basically includes several
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Fig. 13. Read and write bandwidths and latencies on simulators.

hybrid-mapping policies. In FlashSim, since there is no buffer layer and pattern handler layer, we
compare the results from the FTL layer and NAND flash memory layer, bypassing the buffer layer
and pattern handler layer of SUPA simulator. For the comparison of FTL and NAND flash mem-
ory layer, we configure the management policies of SUPA simulator like the policies implemented
in FlashSim. For the FTL management policy, we simulated the same BAST of FlashSim on our
SUPA simulator. In the NAND flash memory layer, we configure 32 NAND flash memories, with
(package,die,plane)=(8,1,4) in FlashSim and (channel,way)=(8,4) in SUPA simulator.

At the first of validations, IOZone benchmark [26] is used to determine I/O bandwidths of two
simulators with file size 10GB and I/O sizes from 4KB to 1024KB, with parameters in Table 3.
Figures 13(a) and 13(b) show read and write I/O bandwidth of two simulators, respectively. For
various I/O sizes, both read and write bandwidth have less than 3% of differences in two simulators.
Here, some differences can be made by physical location selections for write requests. Additionally,
two simulators show same read and write bandwidth trends. For read requests, bandwidths are just
proportional to the number of accessed parallel channels. They show almost same read bandwidth
until 256KB request size, which is the size of single block, and the bandwidth grows based on
parallel access. Bandwidths for write requests have the same trend as the read case, but there
exists bandwidth grow in small request sizes by the effect of garbage collections, since larger write
request size can reduce valid page copying overhead.

We then compared their read and write latencies with workload traces described in Table 4.
Figures 13(c) and 13(d) show normalized read and write latencies by results of SUPA simulator on
two simulators, respectively. On average, they show read and write latencies with less than 2%
differences.
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Fig. 14. Read and write bandwidths and latencies on a real SSD device.

We also compared the SUPA simulator with a real SSD device. Samsung’s SSD 850 PRO is used
with 256GB capacity, 512MB DRAM cache, and 550 and 520MB/s maximum sequential read and
write performances, respectively [34]. It is connected to CentOS 7.2 host by SATA3, and ext4 file
system is used. During the evaluation, a host-level buffer cache is bypassed. We compared the
SUPA simulator with the real SSD device using the same manner as the comparison with Flash-
Sim. For the SUPA simulator, we used 256GB capacity and a full-channel page-level striping FTL
policy. We also added latencies from device connection interfaces such as the file system and data
communication; in our observation, additional latencies for read and write requests are 0.1 and
2.5ms, respectively. Other parameters are the same as the comparison with FlashSim.

Figures 14(a) and 14(b) show read and write bandwidths, respectively, from IOZone benchmark.
They show similar read bandwidths with 10.0% differences. For write bandwidths, the SUPA sim-
ulator shows 11.5% smaller bandwidth values than the real SSD device, with the same trend; band-
widths grow as a request size gets larger, but slower growth than read case. For large write sizes,
the bandwidth differences can come from their internal architectures and algorithms, such as in-
ternal parallelism, garbage collection policy, and low-level hardware specifications. For small write
sizes, since those differences may not affect performances that much, the real SSD and the SUPA
simulator show almost same bandwidths. Figures 14(c) and 14(d) show their read and write laten-
cies with workload traces described in Table 4, respectively. Their read and write latencies show
similar differences through all workloads. On average, the SUPA simulator shows 9.8% smaller read
latencies and 10.3% larger write latencies than the real SSD device, which are similar differences
as shown in Figures 14(a) and 14(b).
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Fig. 15. Cumulative distributions of read and write latencies for various workloads.

Figures 15(a), 15(b), 15(c), 15(d), and 15(e) show cumulative distributions of read and write la-
tencies for OLTP, DBT2, GENERAL, SYSMARK, and WEB, respectively, on the real SSD device
and the SUPA simulator. For all workloads, they show almost similar read distributions. For write
distributions, they have some variations that can come from different internal architectures and
algorithms, but they still show similar trends. With the preceding observations, therefore, we can
validate the SUPA’s simulator, and we used its results in the later evaluations.

6.3 Parameter Configuration

Before comparing SUPA with others, we analyzed how each parameter could affect SUPA. We
evaluated the relationship between the pattern change ratio and latencies with various threshold
values, and the buffer hit ratio of the SUPA’s buffer with changing buffer sizes.
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Fig. 16. Normalized latencies and pattern change ratios with various thresholds.

Fig. 17. Normalized latencies and pattern statistics with small threshold values.

6.3.1 Pattern Distribution with Various Threshold Values. We first evaluated the pattern change
ratio between sequential and random, and latency to see their relationship. Figure 16(a) shows
I/O latencies normalized by the threshold value 10, and Figure 16(b) shows pattern change ratios
of SUPA without the pattern handler. OLTP, GENERAL, and WEB showed relatively stable pat-
tern change ratios, while DBT2 and SYSMARK’s pattern change ratios changed dramatically. I/O
latencies, however, varied regardless of the pattern change ratio, since handling some pattern-
changed blocks with only MULTI or SINGLE can reduce the pattern change ratio, but can increase
latencies; handling sequential blocks on SINGLE increases latency by the lack of parallel access,
and handling random blocks on MULTI increases GC overhead. Therefore, we focused on reduc-
ing the pattern change overhead rather than reducing the pattern change ratio by selecting the
appropriate threshold value.

To determine the threshold value for later experiments, we ran SUPA with small sizes of the
threshold values. Figure 17(a) shows I/O latencies normalized by the threshold value 0. Each work-
load had different latency variation, and we selected the threshold value with smallest average la-
tency, which was 4. Because the page size was 4KB, a block was classified as sequential if the size
of accessed pages were more than 16KB. Figure 17(b) shows pattern statistics of victim blocks for
each workload with threshold value 4. On average, 28.8% of victim blocks have read-intensive pat-
tern and 50.4% of victim blocks have sequential write pattern. Additionally, 74.9% of victim blocks
are lead to be stored in multi-channel policy, and policy switches are required for 39.1% of victim
blocks.
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Fig. 18. Buffer hit ratios of SUPA with various buffer sizes.

6.3.2 Buffer Hit Ratio with Various Buffer Sizes. Next, we increased the buffer size from 4 to
64MB to determine the relationship between buffer size and hit ratio. Figure 18 shows the buffer
hit ratios according to buffer sizes. There is no doubt that the buffer hit ratios are increased as
the buffer sizes are increased. The increment factor of buffer hit ratio, however, was not as fast as
that of buffer size. While the buffer size increased by a factor of 16 (4 to 64MB), buffer hit ratio
increased by factors of only 1.16, 2.79, 1.14, 1.13, and 1.72 for OLTP, DBT2, GENERAL, SYSMARK,
and WEB, respectively. This is because most buffer hits occurred near the MRU position with
spatial and temporal localities [32], so multiple victim selection will not affect the buffer hit ratio
that much. Additionally, although clean blocks take possession of the buffer without co-hits, it will
not decrease the write hit ratio that much.

6.4 Performance Comparison

Now, we compared SUPA with other pattern-based managements in terms of buffer hit ratio, read
and write latencies, and lifetime to verify performance improvement. We first evaluated the buffer
hit ratio according to several buffer schemes. We then compared it with other pattern-based man-
agements, S-FTL [30], BLAS [4], and pattern-based CAVE (p-CAVE) [31, 38], to check latencies and
lifetime improvement from the buffer policy and the pattern change handling process. For the FTL
policies, we used full-channel page-level striping for MULTI, and single channel per block without
page-level striping for SINGLE.

6.4.1 Buffer Hit Ratio and Latency. To determine the effectiveness of the SUPA’s buffer, we
evaluated its buffer hit ratio in comparison with a dirty-only buffer, which is the typical write
buffer, a clean and dirty separated buffer, and unified buffers. Here, p-CAVE is used for a dirty-
only buffer, whose eviction policy is BPLRU [15]. For unified buffers, CFLRU [32] and the SUPA’s
buffer are compared. Figures 19(a), 19(b), and 19(c) show the read, write, and total buffer hit ratios,
respectively. In the Figure 19(a), the read hit ratios of dirty-only buffer are not 0, since reading data
in the dirty-only buffer can also be returned from the buffer. The ratios increase with the buffer
scheme changed as dirty-only, separated, and unified, except for DBT2. For DBT2, the dirty-only
buffer has almost similar hit ratio as unified buffers, because read hit ratios are less than 1% for
all buffers. For the separated buffer, using a separated linked list can increase the read hit ratio as
much as the unified buffer, but the write hit ratio is smaller, since it cannot determine the exact
LRU order between clean and dirty blocks. In total, the SUPA’s buffer showed a 5.0%p and 3.8%p
higher buffer hit ratio than the dirty only and separated buffer, respectively. Two unified buffers
show almost same buffer hit ratios; the difference is less than 0.1%p.
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Fig. 19. Buffer hit ratios of various buffers.

Fig. 20. Read and write latencies for various buffers.

Although two unified buffers have similar buffer hit ratios, however, CFLRU shows longer laten-
cies than the SUPA’s buffer. Figures 20(a) and 20(b) show the read and write latencies of buffers,
respectively. CFLRU and the SUPA’s buffer show almost the same read latencies, which are re-
duced by 16.2% from dirty-only buffer, since clean pages and blocks can exist in the buffer. In case
of write latency, although CFLRU reduces write latencies by 7.0% from dirty-only buffer due to
co-hit, it shows 4.8% longer write latencies than the SUPA’s buffer because of the absence of con-
sideration in patterns and multi-channel parallelism. With these observations, we can conclude
that the SUPA’s buffer can increase buffer hit ratios as CFLRU, and it can reduce write latencies
more than CFLRU.
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Fig. 21. Latencies and lifetimes for read-intensive (WEBENGINE), sequential write-intensive (MOV), and

random write-intensive (RANWRITE) workloads.

6.4.2 Performance and Lifetime without Pattern Changes. We ran WEBENGINE, MOV, and
RANWRITE as extreme cases, since they do not have any pattern change. WEBENGINE is a read-
intensive workload with only a few write requests, MOV is a sequential write-intensive workload,
and RANWRITE is a random write-intensive workload.

Figure 21 shows the read latency of WEBENGINE and the write latencies, erase counts, and valid
page copy counts of MOV and RANWRITE. For BLAS, since both read-intensive and sequential
write-intensive blocks should be rewritten after their first write within NAND flash memory, its
latencies are larger than the others. On SUPA, a new buffer policy decreased the read latency
for the WEBENGINE workload by 6.6%, since the unified buffer can manage clean blocks. For the
MOV workload, SUPA can reduce 12.2% of write latency than S-FTL, because the buffer for random
blocks of S-FTL cannot handle any block. When we compared the write latencies of pattern-based
CAVE, SUPA without pattern handler and SUPA, there was almost no difference. For lifetime, BLAS
has the least erase count and valid page copy count, since it uses page-level mapping only. SUPA
has as same lifetime as other works. Similarly, for the RANWRITE workload, SUPA can reduce
14.6% of write latency than S-FTL. In the case of BLAS, although the workload is random write-
intensive, since patterns of victim blocks can be changed to sequential while they stay in the buffer,
some rewrites for sequential blocks will be needed. Through these observations, we can conclude
that the additional management overhead incurred by SUPA does not affect the total performance
and the lifetime.

6.4.3 Lifetime. Next, we compared lifetime in terms of erase count, valid page copy count, and
wear-leveling. Figures 22(a) and 22(b) show erase count and valid page copy count normalized by
SUPA, respectively. Here, SUPA with SINGLE only stores all blocks in SINGLE with the threshold
value 64, and SUPA with MULTI only stores all blocks in MULTI with the threshold value 0. The
values of S-FTL changed dynamically depending on the workloads due to the absence of page-level
striping. BLAS has smallest erase and valid page copy counts, since it uses a page-level mapping
policy only. SUPA showed almost the same erase count and valid page copy count as other works,
which means our additional schemes do not affect to the lifetime of an SSD.

To confirm that our schemes do not affect wear-leveling, we evaluated distribution of erase
counts of channels. For wear-leveling evaluation, we calculated a coefficient of variation (CV),
which is the ratio of the standard deviation to the mean value, also known as relative standard
deviation, as Equation (1):

Coefficient of Variation (CV) =
standard_deviation

mean
. (1)
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Fig. 22. Lifetimes of pattern-based managements.

Fig. 23. Coefficient of Variation (CV) values of erase counts of channels.

If the CV is small, then each element is closer to the mean value. Figure 23 shows the CV values of
erase counts of channels as a percentage. Although lazy scattering on BLAS and frequent small size
rewrites on S-FTL can increase the erase count, they show nice wear-leveling with the CV values
less than 2.5%. Pattern-based CAVE showed better wear-leveling with CV value 0.31%, since it
scatters pages of sequential blocks at the eviction and selects multiple victims for multiple channels
for random blocks. SUPA showed CV value 0.25%, so our channel selection progress does not incur
a loss of wear-leveling.

6.4.4 Overall Performance. Now, we compared overall performances in terms of read latency
and write latency to show that SUPA has improvement with the new buffer policy and the pattern
change handling. Here, we evaluated spent time on the buffer, the pattern handler, the FTL, and the
NAND flash memory, and we excluded waiting time for previous requests. Figure 24(a) shows the
read I/O latency. In cases of read requests, there is no time taken for garbage collection. SUPA with
MULTI only shows best read latency, since each request is always done with parallel channels. In
total, SUPA can get 1.6, 2.0, and 1.3 times smaller read latency than S-FTL, BLAS, and p-CAVE,
respectively. Here, the pattern handler was not effective to reduce read latency that much, and
almost all reduction came from the buffer management scheme, since other pattern-based man-
agements are based on dirty-only buffers. Compared to p-CAVE, 33.6% of improvement came from
the buffer management, and remaining 1.0% of improvement came from the pattern handler.
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Fig. 24. I/O and garbage collection latencies of pattern-based managements.

Figures 24(b), 24(c), and 24(d) show the write I/O latency, garbage collection latency, and I/O +
garbage collection latency, respectively. The trend of write I/O latency is similar as read case. For
garbage collection latency, BLAS has smallest garbage collection overhead due to page-level map-
ping, and not much improvement on SUPA. Here, actual I/O latency is much larger than garbage
collection latency, since the garbage collection is occurred only for some write requests, but not
all of them. In total, SUPA can get 2.6, 3.9, and 1.3 times smaller write I/O + garbage collection
latency than S-FTL, BLAS, and p-CAVE, respectively. Compared to p-CAVE, 32.8% of improve-
ment came from the buffer management, and the remaining 67.2% of improvement came from the
pattern handler.

7 CONCLUSION

In this article, we proposed a new buffer and FTL management scheme called SUPA, a single uni-
fied read-write buffer and pattern-change-aware FTL for high performance of multi-channel SSD.
Because read and write requests have locality, which is closely related to the performance, we
handle clean and dirty blocks in a unified read-write buffer. Additionally, we adopt different evic-
tion policies for read and write requests based on read and write property of the NAND flash
memory and multi-channel parallelism. To reduce the pattern change handling overhead caused
by an old policy or policy switching, we use a pattern handler between the buffer and the FTL.
The pattern handler detects pattern changes for evicted blocks from the buffer. With the pattern
handler, pattern-changed blocks are stored according to a hybrid mapping policy of the previous
and new policies. Our evaluation showed that, in comparison to previous pattern-based manage-
ments, SUPA can get up to 2.0 and 3.9 times smaller read and write latency, respectively, while
maintaining the same lifetime.
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