
QoS Constrained Workflow Scheduling Scheme Using
the Colored Petri-Net Model

Yun-Gi Ha, Seong-Hwan Kim, Kyung-No Joo, Chan-Hyun Youn

Department of Electrical Engineering, KAIST
Daejeon, Korea

{milmgas, s.h_kim, eu8198, chyoun}@kaist.ac.kr
Abstract. We propose the Quality of Service (QoS) constrained workflow
scheduling scheme utilizing colored Petri-Net model to apply the task division
policy which enables to expand the QoS-guaranteed range, and effectively cope
with resource performance variance. The proposed algorithm investigates each
task’s workload then decides its distribution rate. Afterwards, the proposed
algorithm allocates the cheapest Virtual Machine (VM) to each task which can
satisfy the subdeadline of the task. If there is no suitable VM resource, the task
division policy is applied while penalty cost is considered. We compared the
performance of the proposed algorithm, which is called as the Phased
Workflow scheduling Scheme with Division (PWSD), with the Phased
Workflow scheduling Scheme (PWS) which did not consider the division
policy. The performance comparison, based on randomly generated task within
the same work-flow topology, shows that the proposed scheme outperforms
PWS, which means that it expands QoS-guaranteed range and enhances
robustness to resource performance variance.

Keywords: Workflow scheduling, Task division, Policy-based, Cloud
computing

1 Introduction
As cloud computing offers a feasible solution for workflow applications executed

in the distributed environment, now users are able to take computing resources in
cloud venders at pay-per-use manner without establishing their own computing
infrastructure. However, there still exits issues such as resource management issues
which are needed to be resolved to achieve better performance at lower cost. A
workflow management system which coordinates the execution of each task by
deciding resources to assign different tasks and the order of task execution in cloud
environment is introduced to resolve those issues. Users make a Service Level
Agreement (SLA) contract with the cloud service broker about price and Quality of
Service (QoS) in order to define region for QoS-guaranteed workflow processing
service [1] [2]. Therefore, it is essential for the cloud broker to consider a workflow
scheduling algorithm which allocates the proper task to the proper resource so that
workflow execution request can be processed by the proper resource in the proper
way at the proper time, namely, in the way of satisfying QoS constraints [3].

As workflow scheduling is a NP-hard problem, there exists many researches to
resolve the scheduling problem. Sakellariou, R [5] proposed two different approaches
which change initial schedule if the given budget is less or greater than the cost
required to process submitted workflow. Although this heuristic supports effective
scheduling for a workflow, it is hard to deal with performance variance in cloud

environment as the heuristic is sorted as static scheduling. In addition, it incurs
relatively long execution time because of time-consuming resource reassignment
iterations. Therefore, this algorithm is not applicable in cloud environment. Kim [6]
suggested workflow management scheme which schedule subtasks onto resources
according to given budget or completion time. After investigating load of tasks in a
workflow to decide QoS constraints distribution rate, the workflow is processed by
designated scheme. As Kim [6]’s workflow scheduling scheme belongs to dynamic
scheduling scheme, it can effectively cope with resource performance problem. Also,
as it is a simple heuristic which doesn’t require reassignment process, it instantly
finds aimed schedule. However, its QoS-guaranteed service range and robustness to
resource performance variance are limited with finite resource set. However, Kim
[6]’s workflow scheduling scheme is providing limited service range whose QoS is
guaranteed.

In this paper, we propose a QoS constraints workflow scheduling scheme which
utilize task division strategy based on the colored Petri-Net model. We considered
task division policy to expand QoS-guaranteed service range and improve
performance variance to resource performance variance.

2 Problem Description and Related Works
As the service quality of cloud computing varies even in the same environments, it

is not easy to guarantee the Service Level Agreement (SLA). As shown in Fig. 1,
there exist performance gap for a task among the same type of resources. The
performance variance is caused as each cloud resource is provided with its superficial
specification, such as the number of processor core, the capacity of storage in terms of
GB [12]. If the variance between the worst performance and the best performance is
big, then it is much more difficult to guarantee the SLA, especially in terms of user-
specified QoS constraints. This makes QoS-satisfactory scheduling even harder when
tough QoS constraints are given.

There exists many workflow scheduling scheme to utilize computing resources
efficiently. HEFT [4] is an algorithm that selects the task with the largest load of the
slowest execution path, then it allocates the task onto the fastest processors to
minimize overall workflow completion time. Tough it produces a near-optimum
scheduling which minimizes completion time, it cannot guarantee SLA in
performance-varying environment. Sakellariou, R [5] proposed two different
approaches which change initial schedule if the given budget is less or greater than
the cost required to process submitted workflow. Although this heuristic supports
effective scheduling for a workflow, it is hard to deal with performance variance in
cloud environment as the heuristic is kind of static scheduling. In addition, it incurs
relatively long execution time because of time-consuming resource reassignment
iterations. Therefore, this algorithm is not applicable in cloud environment.

Therefore, we need to set a scheduling algorithm with low complexity and
resilience to performance variance. Kim [6] suggested workflow management scheme
which schedule subtasks onto resources according to given budget or completion time.
After investigating load of tasks in a workflow to decide QoS constraints distribution
rate, the workflow is processed by designated scheme. As they belong to dynamic
scheduling, each scheme effectively copes with performance variance problem. Also,
contrary to Sakellariou’s work [5], it doesn’t require reassignment process, therefore

this heuristic instantly finds aimed schedule. However, Kim [6]’s workflow
scheduling scheme is providing limited service range whose QoS is guaranteed.

In order to resolve the problem mentioned above, we consider a policy-based
workflow scheduling scheme to efficiently expand QoS-guaranteed range. In this
paper, we suggest QoS con-strained workflow scheduling scheme which utilizes task
division policy. Also, we evaluate that how well our proposed scheme handle the
performance variance.

Fig. 1. Performance variance problem in generic computing environment [13]

3 Workflow Management System Model
3.1 A Layered Cloud Workflow Management System

We depict the cloud workflow management system as consisting of three main
components. Fig. 2 shows layered architecture of the proposed workflow
management system. It has three core components – Workflow Scheduling Engine,
Resource Provisioning Manager, and Policy Manager.

Workflow Scheduling Engine is in charge of interacting with Workflow Modelling
Interface, which is the entrance for an application service. A user generates the
processing request of scientific applications then submit the request to the
management system with additional QoS related components using the Workflow
Modelling Interface. Also, Workflow Scheduling Engine manages and executes those
submitted workflows. Topology Analyzer module parses submitted workflow then
interprets the topology of the workflow to figure out whether user-specified QoS
constraints are enough to process the workflow request. Then, Policy Adaptor module
communicates with Policy Manager to make workflow scheduling adaptively with
user-specified QoS constraints. If the QoS constraints are sufficient to process the
request, then Workflow Executor module initiates workflow scheduling and task
execution. If they are not, then the request is rejected. Policy Manager maintains and
decides workflow scheduling policies which are strategies to satisfy QoS constraints.
Policy Manager chooses and provides optimal workflow scheduling policies to
Workflow Scheduling Engine based on the workflow topology analysis. The policy
contains scheduling strategies, such as deciding Virtual Machine (VM) resource
service type which is mapped for each task, deciding the environment for task
execution. Policy Decision Maker module decides the workflow scheduling policies

by referring to the Execution history repository and Policy repository. Decided policy
is passed to Workflow Scheduling Engine to perform workflow scheduling according
to the policy.

Fig. 2. A layered architecture of the cloud workflow management system

3.2 Workflow Management Description Using Petri-Net
Using Petri-Net, we describe workflow scheduling problem as follows.
Definition 1. Workflow We represent workflow W as W = .

P , } indicates a set of places which is used to represent the possible
status of the workflow topology. , } points out a set of transitions
which is employed to depict the characteristics of each task. is
the connection between transitions and places.

Definition 2. Workflow scheduling problem with deadline constraint A
problem which finds a schedule for a workflow W= to be executed
within user-specified deadline D is defined as workflow scheduling problem with
deadline constraint.

Definition 3. VM type A Cloud Virtual Machine Type is illustrated as
. Also, it is assumed that VM type set exists

as a finite set . In addition, rental price per unit time for
arbitrary virtual machine is defined as .

Definition 4. Application profiling matrix Application profiling is the method to
figure out average execution time for a task when it is processed on virtual
machine type and manage the execution time data in the form of table. The table
is marked as application profiling matrix AP. Each element which equals to

 is acquired from repeated execution.
The problem of making decision on mapping performance of different computing

resources onto a job becomes the problem of selecting proper space from AP. We
define cost model to figure out workflow processing cost using cloud resources. We
let rental cost per unit time for VM type . In addition, we denote VM usage time

for the VM type as . Then, total cost required to process given workflow is
described as Eq. (1).

(1)

4 A Proposal of QoS Constrained Workflow Scheduling Scheme
Using the Colored Petri-Net Model

In order to overcome the problem that Kim [6]’s workflow scheduling scheme has,
we consider applying task division policy in workflow scheduling. We define task
division policy using the concept of arbitrarily divisible task [7]. In this paper, we
only consider half-way task division not to make heuristic too complicated.

We define cost model to maximize profit while considering the cost and processing
time. The profit Model for the scheduler is given to Eq. (2).

t l pP B C C= - - (2)

In the formula above, tP indicates Profit. B is budget which is supplied by

user. pC is penalty cost. Additionally, lC is cost for leasing VM(s) from cloud
provider which is obtained as Eq. (3).

() ()()
i i i i

n n

l vm vm flavor vm flavor vm
i i

C C ut init c= = + ×å å (3)

Basically, lC is settled in the way of multiplying VM renal fee per unit time and

duration of VM usage. In Eq. (3), ()iflavor vmc means VM rental fee per unit time by

different VM types. tu denotes duration of VM usage for the task execution. Also,

()iflavor vminit means VM initiation time.

Penalty cost pC , which is caused by SLA violation, is obtained in Eq. (4) and Eq.
(5).

 (4)

 (5)

In Eq. (4) and Eq. (5), variable SV indicates the degree of SLA violation.
Workflow scheduling step represented by the colored Petri-Net

Step 1. Calculate the earliest completion time CT and load rate r() for each task
We investigate the earliest completion time CT and load rate r() for each task by

transferring scheduling token from the last place to the entrance place .
Let be the earliest completion time of task j on the critical path [9], then CT is
determined as shown in Eq. (6).

CT= (6)
Also, we can derive r () as Eq. (7).

r ()= (7)
Step 2. Find proper VM resource according to AP and SV
We transfer execution token from to to find proper VM resources for

task execution according to AP and SV. As we move execution token m, we multiply
load rate r() with remaining execution time RET(p) to calculate the estimated
subdeadline (ESD) for the task . Also, we define SV Estimation Token m’ in order
to calculate penalty cost by proceeding them. According to ESD, we choose the
cheapest resources when SV equals zero. When SV is greater than zero, we apply task
division policy. Then, the task is divided until SV becomes zero. Or task division
stops when the divided task becomes the task of fundamental size. Then, we drive
load rate for divided task to multiply it with RET(p). Afterwards, according to
ESD with task division policy applied, we choose the cheapest resources to process
tasks.

4 Experiments and Evaluation
4.1 Experimental Environment

Fig.3 shows the structure of the experimental environment which consists of
workflow designer, MySQL database, cloud broker, and OpenStack Cloud. We used
MapChem [8] application to compose the services into the workflow topologies.
MapChem [8] is an integrated application for collaborative pharmaceutical research.
Each MapChem service includes QSAR data which needs to be processed. QSAR
data, which includes the information for the chemicals, is denoted as .sdf file. We
took files with different number of chemicals into the experiment, which are 25, 50,
100, and 200 respectively.

We performed the experiment with different workflow topologies, which is
generated in workflow designer. Those topologies are different in number of tasks
from 30, 50, and 70. Also, the shapes of topology are serial (wt1) [10], parallel (wt2)
[11], and hybrid of wt1 and wt2 (wt3) [3]. Once workflow topologies are generated in
Workflow Designer, they are stored in MySQL Database as .xml file. We made
workflow execution requests by specifying Pipeline ID of a workflow topology and
deadline to evaluate how much the proposed algorithm expands QoS-guaranteed
range and deals with resource performance variance compared to Kim [6]’s algorithm.

Fig.3. The structure of experimental environment

4.2 Experimental Results and Discussion

In order to evaluate the performance of the algorithm, we measured and compared
the cost and completion time which is required to process the sample workflow set
with different workload applying proposed workflow scheduling scheme, Phased
Workflow scheduling Scheme with Division Policy (PWSD), and Kim [6]’s workflow
scheduling scheme, Phase Workflow scheduling Scheme without Division Policy
(PWS), respectively. Cost is the total expense needed to process each workflow. We
put a price for each VM type by referencing the price model of GoGrid [12]:
0.06/second for m1.small, 0.09/second for m1.small_var, 0.12/second for m1.medium,
0.18/second for m1.btwml, and 0.24/second for m1.large. Completion time is time
span taken for processing of each workflow topology.

In order to observe how much the proposed algorithm expands QoS-guaranteed
range compared to PWS, we sent workflow execution request for each workflow
topology while increasing user-specified deadline by 20 seconds. Also, in order to
observe the robustness to resource performance variance of each scheme, we sent
workflow processing request at the condition that deadline is fixed while task
execution time delay increases proportionally by 0.05.

Fig.5. shows the actual completion time and cost for wt1 with 50 tasks versus
increment of deadline on PWSD and PWS. We are listing here only the graph for wt1
with 50 tasks as graphs for wt2 and wt3 shows similar tendencies that wt1 with 50
tasks displays. In this figure, dotted line indicates user-specified deadline. We can see
that PWSD line is following the user-specified deadline, whereas PWS lines excesses
dotted lines when user-specified deadline is too low. The low-deadline required
regions in the graph is not able to be reached by PWS because even though PWS
allocates the large type VMs to all the tasks then makes the fastest scheduling, it is
still bigger than user-required deadline. For the region PWS can guarantee QoS, the
lines of PWS and PWSD should be overlapped as no task division will be applied for
PWSD, which will result in the same cost with the case when PWS is applied. Also,
as shown in Fig.6, we can see that the proposed scheme shows better performance in

adapting to the delay time and completing the workflow execution on time than PWS
as the proposed scheme produces QoS-satisfactory scheduling, or at least, makes only
2% execution time violation to the required deadline in the worst case.

Fig.5. Performance comparison over cost and completion time while increasing deadline
between the proposed algorithm and PWS for wt1 with 50 tasks

Fig.6. Performance comparison over cost and completion time while increasing task execution
time delay between the proposed algorithm and PWS for wt1 with 70 tasks

5 Conclusion
In this paper, we proposed the policy-based QoS constrained workflow scheduling

scheme which is a kind of the phased scheduling scheme. It has merits in dealing with
the uncertainty of task execution time which is changed by the state of the VM
resource and finding the near-optimal schedule for processing the workflow execution
request without path guessing. Also, we suggested to apply the task division policy
that divides then execute a task when SLA violation cost is big in order to expand
QoS-guaranteed region and to improve robustness to resource performance variance.

In order to evaluate the performance, we measured the cost and the completion
time for the proposed scheme and Kim [6]’s algorithm while increasing deadline or
task execution delay. We could see that the proposed algorithm provides broader

QoS-guaranteed region and improved robustness to the resource performance
variance. Therefore, we concluded that the proposed scheme surpasses PWS at
providing broad QoS-guaranteed service region and handling the resource
performance variance. In the future, we can develop our idea to consider and cope
with other uncertainties, for example, dynamic VM resource price. Furthermore, we
can make advance for the proposed scheduling scheme to consider multi QoS
constraints simultaneously by determining new workflow policy.

Acknowledgments. This research was funded by the MSIP (Ministry of Science, ICT
& Future Planning), Korea in the ICT R&D Program 2014 and supported by the
MSIP (Ministry of Science, ICT&Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program (NIPA-2014(H0301-14-
1020)) supervised by the NIPA (National IT Industry Promotion Agency

References
1. Blake, M. Brian, and David J. Cummings. "Workflow composition of service level

agreements." Services Computing, 2007. SCC 2007. IEEE International Conference on. IEEE,
2007.

2. Wu, Linlin, Saurabh Kumar Garg, and Rajkumar Buyya. "SLA-based admission control for a
Soft-ware-as-a-Service provider in Cloud computing environments." Journal of Computer and
System Sciences 78.5 (2012): 1280-1299.

3. Yu, Jia, Rajkumar Buyya, and Chen Khong Tham. "Cost-based scheduling of scientific
workflow applications on utility grids." e-Science and Grid Computing, 2005. First
International Conference on. IEEE, 2005

4. Topcuoglu, Haluk, Salim Hariri, and Min-you Wu. "Performance-effective and low-complexity
task scheduling for heterogeneous computing." Parallel and Distributed Systems, IEEE
Transactions on 13.3 (2002): 260-274.

5. Sakellariou, Rizos, et al. "Scheduling workflows with budget constraints." Integrated Research
in GRID Computing. Springer US, 2007. 189-202.

6. Kim, Daesun (2014). “Adaptive Workflow Scheduling Scheme Based on the Colored Petri-Net
Model in Cloud.” Master’s thesis, Korea Advanced Institute of Science of Technology

7. Bharadwaj, Veeravalli, Debasish Ghose, and Thomas G. Robertazzi. "Divisible load theory: A
new paradigm for load scheduling in distributed systems." Cluster Computing 6.1 (2003): 7-17.

8. PharosDreams. Available: http://www.pharosdreams.com/desktop/desktopsolution/home.html
9. Kelley Jr, James E. "Critical-path planning and scheduling: Mathematical basis." Operations

Research 9.3 (1961): 296-320.
10. Sun, Sherry X., Qingtian Zeng, and Huaiqing Wang. "Process-mining-based workflow model

fragmentation for distributed execution." Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 41.2 (2011): 294-310.

11. Mao, Ming, and Marty Humphrey. "Auto-scaling to minimize cost and meet application
deadlines in cloud workflows." Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2011

12. GoGrid. Available: http://www.gogrid.com/
13. Kim, Byungsang (2013). “A Study on Cost Adaptive Cloud Resource Broker System for Bio-

Workflow Computing.” Ph. D. Dissertation, Korea Advanced Institute of Science of
Technology

