
Network-Aware VM Placement for Scientific Workflow

Application

Woojoong Kim and Chan-Hyun Youn

Department of Electrical Engineering

KAIST, Daejeon, Korea

{w.j.kim, chyoun}@kaist.ac.kr

Abstract. In the case of research institute that maintains their own private cloud

and it’s metadata such as network topology and hardware specification, VM

placement which decides a certain physical node (i.e. a blade server in a rack)

within the cloud for creating virtual machine (VM) instance is important in

order to guarantee the performance of communication between VMs and reduce

the occurred data transmission delay between VMs for workflow processing.

However, the conventional algorithms are concentrated on the placement for a

VM creation requested at a certain time so cannot guarantees the network

performance for the successive VM creation requests in time line from

scientific workflow application. In this paper, to resolve this problem, we

propose the new network-aware VM placement algorithm for scientific

workflow applications. In addition, we consider the network interference

occurred between the consolidated VMs on the same physical node in cloud

environment.

Keywords: Cloud Computing, Scientific workflow application, VM placement.

1 Introduction

Cloud Computing technology has been developed for years and considered as a new

computing model, in which computing or storage resources are provided through

internet in an on-demand fashion so, the resources can be leased or released when

user want to use or not and they pay as they use [1]. According to Armbrust M et al.

[2], cloud computing is defined as ‘both the applications delivered as services over

the internet and the hardware and systems software in the data centers that provide

those services’. Due to the characteristics of cloud computing such as scalability and

pay-for-use, many computer based field pay attention to cloud computing such as

chemistry, biology and physics. The one of main concerns is a scientific workflow

application service for the generation of science-grade mosaics of the sky in

astronomy and the underpinnings of complex diseases in bioinformatics in cloud

environment. The previous works for workflow management is mainly concentrated

on the workflow scheduling which maps VM flavor type and instance to each sub-

task within the workflow[3,4,5,6]. However, in the case of research institute that

maintains their own private cloud and it’s metadata such as network topology and

hardware specification, VM placement which decides a certain physical node (i.e. a

blade server in a rack) within the cloud for creating virtual machine (VM) instance is

also important in order to guarantee the performance of communication between VMs

and reduce the occurred data transmission delay between VMs for workflow

processing. Especially, for scientific workflow applications which make data in the

unit of GB on processing, data transmission delay can be the considerable

performance degradation for each request on a scientific workflow application. There

are several previous works for VM placement. Zamanifar et al. [7] introduced the

data-aware VM placement algorithm to reduce the data transfer delay by the

optimization for VM placement and their allocated data rates. Alicherry et al. [8]

introduced the network-aware VM placement in a heuristic way to guarantee the

network performance between VMs specified by user in distributed clouds. However,

these conventional algorithms are concentrated on the placement for a VM creation

requested at a certain time so cannot guarantees the network performance for the

successive VM creation requests in time line from scientific workflow application. In

this paper, to resolve this problem, we propose the new network-aware VM placement

algorithm for scientific workflow applications. In addition, we consider the network

interference occurred between the consolidated VMs on the same physical node in

cloud environment [9].

2 Model

We focus on the distributed cloud environment which consists of many small-scale

data centers distributed over a geo-graphic area [10]. This environment can reduce the

access latency for customer requests by covering wide area locations compared to the

traditional centralized cloud environment which large-scale datacenters are placed at a

few locations. The network architecture in this environment is typically organized in a

hierarchical manner [8]. Fig. 1 shows the distributed cloud environment with this

network architecture.

<Fig. 1. A distributed cloud environment >

Each rack in the distributed cloud environment shown in fig. 1 is communicated

using aggregator switches. Several blade servers are included in each rack and

communicated using a top-of-the-rack (TOR) in each rack. The VMs in the same

blade server can communicate directly each other without going through any external

switch. Each VM for a customer request is created on a blade server. As the distance

between the created VMs increases, the network latency between VMs increases.

Therefore, the network performance of the VMs for customer’s application depends

on the blade servers which they are allocated to. A cloud environment typically

provides VM in VM flavor type which is the virtual hardware templates defined by

sizes for RAM, disk, number of cores, and so on. (e.g. small, medium and large type

provided by a cloud service provider such as GoGrid[11])

On this distributed cloud environment, we implement the cloud based workflow

management system to provide a scientific workflow application shown in fig 2. This

cloud based workflow management system consists of four main modules – workflow

designer, workflow manager, resource manager and cloud node adaptor.

<Fig. 2. Cloud based workflow management system >

The workflow designer provides the GUI user interface for a scientific workflow

application to users so they can specify their request description and submit the

scientific workflow application graphically to the workflow manager. The request

description is composed of user id uid and the workflow description G. Scientific

workflow applications considered in this paper are represented as directed acyclic

graph (DAG) as [12]. To represent the workflow G of DAG, n𝑖 denotes the i th node

of workflow G (node is identical to sub-task) in our denotation. The connection or

dependency from node i to j in the workflow is represented as edge e𝑖,𝑗 and the set of

edge is represented as E. In addition, the QoS constraints Q, e.g. the execution time

constraints required by user for the requested workflow, is also included in the

workflow description. The workflow description is represented as {N =

{𝑛1, 𝑛2, … , 𝑛𝑘}, E, Q}. Fig. 3 shows the example of the requested workflow.

<Fig. 3. The example of the requested workflow>

Workflow manager decides and allocate VM flavor type to each sub-task within the

requested workflow from each user, in other words, workflow manager does

workflow scheduling. Resource manager locates and creates the requested VM of the

decided VM type from workflow manager for the requested workflow by each user,

in other words, resource manager does VM placement. The cloud node adaptor

provides the integrated interface to access, create and delete VM instances for

different cloud environments through RESTful API interface [13] so integrates each

cloud environment into the single huge cloud environment virtually.

When a request for a scientific workflow application is submitted represented by the

request description through the workflow designer, the workflow manager parses the

workflow description and does workflow scheduling to satisfy the requested QoS

constraints such as deadline while minimizing the cost for leasing VMs. To do this,

we use the conventional workflow scheduling algorithms - VM Packing[14] and

Loss/Gain[5]. Fig 4 shows the example procedure of the conventional workflow

scheduling.

<Fig. 4. The example procedure of the conventional workflow scheduling [14,5]>

After completing the workflow scheduling process, the workflow manager requests a

VM instance to the resource manager for each sub-task within the requested workflow

based on the scheduled information mapping between each sub-task and the VM

instance and dispatches the sub-task to the created VM by the resource manager. In

this process, the resource manager decides a certain physical node within the cloud

environment for creating the requested VM instance based on our proposed network

aware VM placement algorithm. In next section, we describe the proposed algorithm

in detail and show that it can reduce the occurred data transmission delay between

VMs and improve the performance (i.e. total processing time) for workflow

processing efficiently.

3 Network aware VM placement algorithm

This algorithm guarantees the network performance for the successive VM creation

requests in time line from scientific workflow application considering the network

interference occurred between co-location VMs, so that reduce the occurred data

transmission delay between VMs for workflow processing efficiently. To do this, the

last used resource table LastUsedResourceTable is maintained in order to store the

physical node used lastly to create the VM for each user. Since there is no available

last used resource information when a user requests a VM first, the VM is created to a

physical node maxCapacityPN having maximum remaining resource capacity within

distributed clouds in order to increase the probability that the physical node keep a

certain amount of resource capacity for the next VM of the user. After creating the

VM, the physical node of the created VM are recorded to the last used resource table

with the user id uid. Since the last used resource information is available in the last

used resource table when the user requests again, a VM is created in the same

physical node with the last used resource if possible in order to retain the maximum

bandwidth by communicating directly. If the resource capacity of this physical node is

not available for the requested flavor type f from the user, available physical nodes

availablePNs are sorted in the closest order from the physical node of the last used

resource. The new physical node as close as possible to the physical node of the last

used resource while having enough resource capacity for flavor type f and having the

smallest network traffic decided to minimize the network interference from other

VMs on the physical node. The network traffic of each physical node is monitored in

real-time. After finding the new physical node and creating the VM, the resource

information on the new physical node is updated to the last used resource table for the

corresponding user. Algorithm 1 shows the procedure of the proposed network aware

VM placement algorithm.

4 Experiment

To evaluate the performance of the proposed network-aware VM placement

algorithm, we evaluate the proposed scheme compared to the typical network-aware

resource provisioning scheme proposed by Alicherry, M et al[8]. We use Burrows-

Wheeler Aligner (BWA) which is the typical bio scientific application for analyzing

the genome[15]. This application has various tasks (i.e. BWA index, alignment,

pairing and view etc.). A request is comprised of the BWA tasks as shown in the fig.

5 and the input data is same for each request.

< Fig. 5. A request of BWA service for the experiment>

Algorithm 1. Network-aware VM placement algorithm

Input : 𝑢𝑖𝑑𝑘 , f (𝑢𝑖𝑑𝑘 ∶ request id, f : flavor type)

Output : created VM

01: if LastUsedResource of 𝑢𝑖𝑑𝑘 is available

02: physicalNode 𝑝𝑘 ← get LastUsedResource of 𝑢𝑖𝑑𝑘

03: if physicalNode 𝑝𝑘 is available for flavor type f

04: createdVM = createNewVM(𝑝𝑘 , f)

05: return createdVM

06: else

07: sort availablePNs in closest order from 𝑝𝑘

 and split availablePNs into sameLevelPNs (∈ availablePNs)

08: for sameLevelPNs ∈ availablePNs

 sort sameLevelPNs in smallest traffic order

 for 𝑝𝑖 ∈ sameLevelPNs

09: if 𝑝𝑖 is available for flavor type f

10: createdVM = createNewVM(𝑝𝑖 , f)

11: record {𝑢𝑖𝑑𝑘 , 𝑝𝑘} into LastUsedResource

12: return createdVM

13: end if

 end for

14: end for

15: return null

16: end if

17: else

18: maxCapacityPN ← max(remainCapacity(𝑝𝑗)) ⋯ (𝑝𝑗 ∈ PNSet)

19: if maxCapacityPN is available for flavor type f

20: createdVM = createNewVM(maxCapacityPN, f)

21: record {𝑢𝑖𝑑𝑘 , 𝑝𝑘} into LastUsedResource

22: return createdVM

23: else

24: return null

25: end if

26: end if

To be independent to the workflow scheduling, all tasks are allocated in large VM

type. Finally, we make the requests in the different interval time (8 sec, 7 sec, 6 sec, 5

sec, 4 sec) within 3min and measure the occurred total data transmission delay in this

experiment.

We use openstack cloud environment and the available resource policies in

openstack cloud environment are small type(1 CPU, 2GB MEM, 10GB Disk),

medium type(2 CPU, 4GB MEM, 10GB Disk) and large type(4 CPU, 8GB MEM,

10GB Disk). We build the cloud testbed using 4 nodes with the deployment of

openstack cloud environment[16]. Node 1 is nova controller and node 2,3,4 are nova

compute nodes. Each node has the hardware specification described in Table 1.

< Fig. 6. The experiment environment with openstack[16]>

< Table 1. The specification of nodes in the openstack environment >

 Node1 Node2 Node3 Node4

Function Nova

Controller

Node

Nova

Compute

Node

Nova

Compute

Node

Nova

Compute

Node

Specification H/W: Intel , Xeon E5620 2.4G, Core 16, MEM 16G, HDD 1T

OS: Ubuntu 12.04

IP address Eth0

(143.248.152.64)

Eth0

(143.248.152.61)

Eth0

(143.248.152.62)

Eth0

(143.248.152.63)

< Fig. 7. The total data transmission delay of proposed scheme and conventional scheme>

The proposed scheme has the smaller total data transmission delay over the entire

request interval time compared to the conventional scheme as shown in fig. 7. The

conventional scheme cannot guarantees the network performance for the successive

VM creation request on BWA service compared to the proposed scheme because it is

concentrated on the placement for a VM creation request and not considers the

interference occurred by the traffic congestion. As a result, the conventional scheme

shows the worse performance on the scientific workflow applications (including

BWA service) which need the successive VM creation.

5 Conclusion

The conventional VM placement algorithms cannot guarantees the network

performance for the scientific workflow applications (including BWA service) which

need the successive VM creation in time line. In this paper, to resolve this problem,

we propose the new network-aware VM placement algorithm for scientific workflow

applications. In addition, we consider the network interference occurred between the

consolidated VMs on the same physical node in cloud environment. Finally, we prove

the proposed VM placement algorithm can reduce the data transmission delay for

executing the scientific workflow application compared to the conventional algorithm.

Acknowledgments. This research was supported by Next-Generation Information

Computing Development Program through the NRF funded by the Ministry of

Education, Science and Technology (2010-002073) and the ICT R&D program

of MSIP/IITP[10038768, The Development of Supercomputing System for the

Genome Analysis]

References

1. Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the art and research

challenges. J. Internet Services and Applications, 1(1), 2010.

2. Armbrust M et al (2009) Above the clouds: a Berkeley view of cloud computing. UC

Berkeley Technical Report

3. Topcuoglu, Haluk, Salim Hariri, and Min-you Wu. "Performance-effective and low-

complexity task scheduling for heterogeneous computing." Parallel and Distributed Systems,

IEEE Transactions on 13.3 (2002): 260-274. ,

4. Sakellariou, Rizos, and Henan Zhao. "A hybrid heuristic for DAG scheduling on

heterogeneous systems." Parallel and Distributed Processing Symposium, 2004. Proceedings.

18th International. IEEE, 2004. ,

5. Sakellariou, Rizos, et al. "Scheduling workflows with budget constraints."Integrated

Research in GRID Computing. Springer US, 2007. 189-202. ,

6. Yu, Jia, Rajkumar Buyya, and Chen Khong Tham. "Cost-based scheduling of scientific

workflow applications on utility grids." e-Science and Grid Computing, 2005. First

International Conference on. IEEE, 2005.

7. Zamanifar, Kamran, Nader Nasri, and M. Nadimi-Shahraki. "Data-aware virtual machine

placement and rate allocation in cloud environment." Advanced Computing &

Communication Technologies (ACCT), 2012 Second International Conference on. IEEE,

2012.

8. Alicherry, Mansoor, and T. V. Lakshman. "Network aware resource allocation in distributed

clouds." INFOCOM, 2012 Proceedings IEEE. IEEE, 2012.

9. Corradi, Antonio, Mario Fanelli, and Luca Foschini. "VM consolidation: a real case based on

openstack cloud." Future Generation Computer Systems 32 (2014): 118-127.

10. SCOPE Alliance. Telecom grade cloud computing. www.scope-alliaince.org, 2011

11. GoGrid. [Online]. Available: http://www.gogrid.com/]

12. J. Yu, R. Buyya, “Scheduling scientific workflow applications with deadline and budget

constraints using genetic algorithms Scientific Programming”, IOS Press (2006), pp. 14-217

-4

13. Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

14. Kang, Dong-Ki, et al. "Cost adaptive workflow scheduling in cloud

computing."Proceedings of the 8th International Conference on Ubiquitous Information

Management and Communication. ACM, 2014.

15. Burrows-wheeler aligner (bwa). http://bio-bwa.sourceforge.net/.

16. Openstack foundation. http://www.openstack.org/.

http://www.scope-alliaince.org/
http://www.gogrid.com/
http://bio-bwa.sourceforge.net/

