
Computer Networks 82 (2015) 81–95
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Multihybrid job scheduling for fault-tolerant distributed
computing in policy-constrained resource networks
http://dx.doi.org/10.1016/j.comnet.2015.02.030
1389-1286/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: yhmoon@etri.re.kr (Y.-H. Moon), chyoun@kaist.ac.kr

(C.-H. Youn).
Yong-Hyuk Moon a,⇑, Chan-Hyun Youn b

a Electronics and Telecommunications Research Institute, South Korea
b Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, South Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 June 2014
Received in revised form 1 December 2014
Accepted 4 February 2015
Available online 10 March 2015

Keywords:
Job scheduling
Fault tolerance
Policy heterogeneity
Multiobjective optimization
Distributed computing
Genetic algorithm
Unpredictable fluctuations in resource availability often lead to rescheduling decisions that
sacrifice a success rate of job completion in batch job scheduling. To overcome this
limitation, we consider the problem of assigning a set of sequential batch jobs with
demands to a set of resources with constraints such as heterogeneous rescheduling policies
and capabilities. The ultimate goal is to find an optimal allocation such that performance
benefits in terms of makespan and utilization are maximized according to the principle
of Pareto optimality, while maintaining the job failure rate close to an acceptably low
bound. To this end, we formulate a multihybrid policy decision problem (MPDP) on the
primary-backup fault tolerance model and theoretically show its NP-completeness.
The main contribution is to prove that our multihybrid job scheduling (MJS) scheme
confidently guarantees the fault-tolerant performance by adaptively combining jobs and
resources with different rescheduling policies in MPDP. Furthermore, we demonstrate that
the proposed MJS scheme outperforms the five rescheduling heuristics in solution quality,
searching adaptability and time efficiency by conducting a set of extensive simulations
under various scheduling conditions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the most challenging requirements of job
scheduling systems currently being developed is ensuring
that they elastically allocate computing resources to jobs
despite the unpredictable occurrence of resource failures.
With increased complexity, dynamic features, and various
uncertainties, resource failure [1–3] is the rule rather than
the exception in distributed computing systems (DCS) such
as grid, peer-to-peer, and cloud computing. It has been
reported that over 75% and 70% of the resources have
failure rates of about 20% and 40% in workload archives
such as DEUG, and UCB and SDSC [3], respectively. From
these application-level traces, we found that most
resources have relatively high failure probabilities. It is
also recognized that failures can significantly affect
scheduling performance and that the large number of job
failures is still caused by resource fluctuations and unavail-
ability, as discussed in [2]. Specifically, Ref. [4] has exhib-
ited the statistical overviews on job execution in ten
different DCS in which the proportion of failed jobs varied
from 1.23% to 83.94% and failed jobs consume lots of
computational power of resources, ranging from 0.41% to
73.88%. Although most resources are managed by autono-
mous domains (ADs), each AD tends to employ proprietary
administrative rules (i.e., rescheduling policies) for job
recovery. This fact further complicates the large scale
resource pooling for reliable job execution in a cooperative
manner. As a result, in addition to extending known

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.02.030&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2015.02.030
mailto:yhmoon@etri.re.kr
mailto:chyoun@kaist.ac.kr
http://dx.doi.org/10.1016/j.comnet.2015.02.030
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

82 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
rescheduling policies, it requires a new scheduling algo-
rithm that can efficiently guarantee fault tolerance.

There are some scheduling approaches recently studied
in order to alleviate the undesirable effects of resource
failures with different policies. In [5], a task re-execution
policy employed in Hadoop has been currently studied in
order to analyze its impact on job completion reliability
and time from a theoretical viewpoint. However, it is not
clear which configuration of this policy is sufficient to
prevent a running job from being interrupted by resource
failures. To overcome this limitation, Zhang et al. [6] have
integrated backfilling and migration with well-established
gang scheduling strategy. The fully integrated allocation
method consistently outperforms the others. Neverthe-
less, the authors have not explicitly addressed what speci-
fic conditions can decide the most suitable combination of
different strategies. For similar reason, a prior study [7]
proposes a concept of dynamic policy switching at run
time for interactive jobs, which require immediate execu-
tion. Its weakness is that the proposed scheme is irrelevant
for batch jobs that are submitted to a job-ready queue and
await their turn to run. On the contrary to that work, in [8]
the authors propose how to decide a near-optimal size of
hybrid cluster in clouds for accelerating batch analytics.
From this study, we have found that it is possible to toler-
ate a high degree of instability in clouds if system-level
metrics are only given; however, the degree of perfor-
mance gain is not strongly correlated with the resource
usage cost. To tackle this problem, Farahabady el al. [9]
proposes a new scheduling algorithm which generates
solutions with the Pareto optimality between cost and
performance. The key question of how to dynamically
cope with performance variability of underlying resources
due to failures remains unanswered. Furthermore, the
performance impacts of different combinations of job
selection policies and job dispatching mechanisms have
been presented for the Bag-of-Tasks (BoT) allocation [10].
Although this study has shown monotonic improvement
in some cases, they have only emphasized the static
combinations of different job allocation strategies and
have paid less attention to the fact that resources are
controlled by heterogeneous rules. In [11], the authors
have analyzed the correlation between job sizes and
scheduling algorithms. However, they have not consid-
ered the potential gains of using different scheduling
approaches simultaneously. Besides, the failure condition
has not been considered a major issue.

To the best of our knowledge, there have not been direct
contributions to tackle the policy heterogeneity problem in
the context of job scheduling. Thus, a new policy-
integrated scheduling scheme needs to answer the follow-
ing research questions, which have remained unsolved:
(1) How much performance improvement is expected, as
compared to static rescheduling policies? (2) How much
fault tolerance can it provide without sacrificing the main
objectives considering a large fraction of resources in
availability? (3) Assuming that different policies are
supported in various ADs, how can it adapt to this situation
regarding scheduling quality and complexity? In this
paper, we propose a multihybrid job scheduling (MJS)
scheme in order to deliver robust resource allocation for
computational batch jobs under heterogeneous policies.
The proposed MJS scheme adopts a messy genetic algo-
rithm (mGA) [12], which has been applied to solve combi-
natorial optimization problems. The main contributions of
this study are as follows:

� We formulate the aforementioned problem as a
multihybrid policy decision problem (MPDP) on the
primary-backup fault tolerance model and discuss
how an optimal solution can be quantified in terms of
scheduling quality.
� To solve MPDP effectively, we propose a new MJS

scheme that finds an optimal schedule even in a
large search space by using stochastic search opera-
tions of mGA within relatively low and acceptable
complexity.
� The mGA-based MJS scheme demonstrates high fault

tolerance without sacrificing the other objectives, such
as makespan and load balance, unlike the static
approaches and deterministic algorithms (e.g., minmin
[13]), even in the policy-constrained DCS.

The remainder of this paper is organized as follows.
Section 2 presents a fault-tolerant job scheduling model
with the four rescheduling policies. We formulate MPDP
in Section 3 and then propose an mGA-based MJS scheme,
focusing on solution representation and realization in
Section 4. Section 5 provides analytical views on the terms
of approximation of computational complexity and
possibility of convergence of the proposed scheme.
Simulation results and discussions are in Section 6.
Finally, we conclude the paper in Section 7.

2. Fault-tolerant job scheduling model

A job scheduling system in DCS consists of three tiers:
users submitting batch jobs J ¼ fjiji ¼ 1;2;3; . . . c;Ng, a
job scheduler, and computing resources R ¼ frxjx ¼ 1;2;
3; . . . ;Mg. Each resource x; rx, has its relative computational
speed cx, which is assumed to be an arbitrary and non-
decreasing (i.e., concave) function over time. A job
scheduler distributes stochastic workloads vðDtÞ arriving
in a given period of time, Dt across allocated resources.
An arriving ji can be distinguished by its arrival time ~ai,

job length li, and deadline ~di. ~ai should be bounded to
½0;Dt� and li indicates the time spent by rx with cx ¼ 1
(i.e., reference computing element) to execute ji.
Therefore, the effective length of ji can be calculated as
~li;x ¼ li=cx, if there is no failure. We suppose that at time
zero, all resources are operable and jobs can be allocated
to them. Resources can execute, at most, a single job at a
time and can also fail at any random time. Table 1
summarizes a number of commonly used symbols and
we will discuss some of them further after that.

2.1. Application workload

Realistic workloads comprise mostly single-process
jobs, and 85–95% of them are batch jobs as measured in
the several grid workloads [14]. Likewise, we adopt the

Table 1
Definition of symbols used in the mathematical model.

Symbols Definition

J ; R; P A set of jobs, available resources, and
rescheduling policies

ji #J ; rx #R; Px � P ith job, xth resource, and rescheduling
policies supported by rx

li; cx;
~di; ~ai;

~li;x A length of ji , a computational speed of rx ,
a deadline of ji , an arrival time of ji , and a
effective length of ji allocated to rx

~ri; ~ci; ~si;x;
~f i;x

A release time and a completion time of ji ,
respectively, and the start time and the
failure time of ji at rx , respectively

gð~f i;xÞ A failure probability at the time ~f i;x

si # Sk; Sopt ith sub-schedule of schedule k and an
optimal schedule

S; Ai A set of all possible schedules and a set of
allocated resources to ji

Ji; jk
i # Ji

A job chain of ji and kth backup copy of ji

pi; rðjk
i Þ; Tðjk

i Þ A policy commonly adopted by Ai , a

resource scheduled for jk
i , and a time slot

assigned to jk
i

Qsch
k ; Zð�Þ The quality of a given kth schedule and a

normalization function
�ð�Þ; fk; rðfkÞ A penalty coefficient, a job failure rate of

Sk , and the standard deviation of fk

g 6 gmax The number of generations

Pg ; chu # Pg ; chopt gth population, uth chromosome, and an
optimal chromosome

f u; P; F uth fitness, a population size, and the
average number of failures

jk
i;x ; ~sk

i;x; ~ck
i;x;

~f k
i;x A backup copy jk

i allocated to rx and a start
time, a completion time, and a failure time

of jk
i;y , respectively

cðjk
i;xÞ; pðjk

i;xÞ A completion state of jk
i;x and a

rescheduling policy mode for jk
i;x

Dk
i;x!y

The data transferring delay of ji between
rx and ry

mk
i ; q�x;y; qi; li A data size of jk

i and an adjusted
transmission rate, a transmission rate, and

a failure rate of jk
i on links between rx and

ry , respectively

Ok
i;x; nk

i ; ox ; vkþ1
i;y State-tracking overhead of jk

i;x , the number

of state traces for jk
i;x , a unit overhead for

checkpointing at rx , and a remaining

length of jk
i;y

sx A period of time spent by each
checkpointing operation on rx

uð~sk
i;xÞ;gð~f k

i;xÞ A probability of continuously processing

jk
i;x after ~sk

i;x and a probability of job failure

at ~f k
i;x

1 Fault tolerance is a robustness index of rescheduling decisions that can
immediately response to an unexpected resource failure with the least
deadline violations. This measure is quantitatively calculated as the average
job failure rate in this paper.

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 83
sequential batch jobs (i.e., bag-of-tasks) with loosely-
coupled intercommunication [10]. Due to the properties
of those jobs, they are assumed to be computationally
intensive and non-preemptable [15].

Definition 1. Let Rc ¼
Pm

x¼1cx denote the total number of
reference computing resources which are given within Dt.
The workload intensity at time Dt imposed on the
resources, vðDtÞ, can be expressed as

vðDtÞ ’
XN

i¼1

li

Rc � Dt
: ð1Þ
Intuitively, vðDtÞ is calculated by dividing the length of
jobs arriving in Dt by the amount of resources that are able
to process jobs. The successful completion of a job is
strongly correlated with its length and a degree of consis-
tent availability within the given time periods.
2.2. Resource failure

As analyzed in [3], the Weibull distribution is com-
monly used to model the time until a resource failure of
various large scale DCS. Thus, our scheduling system is
assumed to follow the Weibull failure law of random

variable x; hðxÞ ¼ ðb=aÞ � ðx=aÞb�1 as the hazard function,
where b > 0 and a > 0 represent the shape parameter
and the scale parameter, respectively. We can determine
the overall level of system failure by adjusting values of
two parameters as discussed in [16].

Definition 2. The failure rate of rx during the execution of

ji can be expressed as gð~f i;xÞ ¼ Pr½~si;x <
~f i;x < ~si;xþ

~li;x j ~f i;x > ~si;x�, where gð~f i;xÞ is the conditional probability

function of a resource failure; ~si;x and ~f i;x represent the start
time and the failure time of ji at rx, respectively. This

function can be then transformed to fFð~si;x þ~li;xÞ�
Fð~si;xÞg=Rð~f i;xÞ, where Fð�Þ and Rð�Þ are the cumulative
distribution function and the reliability function
ð1� FðxÞÞ, respectively, of the Weibull distribution
model. Additionally, failures of resource are assumed to
be statistically independent and we suppose that the
job scheduler becomes aware of the failures within a
negligible amount of time.
2.3. Heterogeneous rescheduling policy

For the fault tolerance1 of job scheduling, we consider
that each job would be immediately rescheduled by one of
following static fault-tolerant policies P, when a resource

failure occurs. Hence, each rx is characterized by cx; gð~f i;xÞ,
and Px � P, where Px denotes rescheduling policies sup-
ported by rx. These factors directly correspond to job execu-
tion delay in the time-dependent scheduling problem. With
J , this type of reconfiguration should be planned in a batch
schedule prior to the job assignment in order to improve
flexibility in batch scheduling. As a result, a new scheduling
scheme is required in order to provide the ability to deal
with large number of possible combinations of J ; R, and P.

� Immediate restart policy (IRP): Non-checkpointable
applications must restart from the beginning when a
failure occurs. In this strategy, a job scheduler immedi-
ately restarts a job at the same resource after the
resource availability is restored to required levels
[17,18].

84 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
� Stateless migration policy (SLMP): This conventional
migration scheme [19,20] is also designed for the non-
checkpointable jobs. If failure is detected, then a
migrant job is reactivated with relevant data trans-
ferred from the first resource to the backup resource.
So, delays are inevitable due to data movement and
job re-execution.
� State-tracking migration policy (STMP): In contrast to

IRP and SLMP, this rescheduling strategy uses a check-
pointing technique [21,22] as a fast recovery method
for abnormal job behaviors. Thus, a backup resource
reads the previously saved transient states of a migrant
job from the state-tracking server. A job scheduler can
then restart the job from the failed point.
� Replicated execution policy (REP): Job replication

involves duplicating the same job for different resources
for performing multiple and simultaneous executions
[16,23]. This delay-tolerant strategy can be used to
guarantee the assured completion of critical missions
which necessarily require hard-type constraints.

As our preliminary results shown in Fig. 1, some policies
have held a dominant position in one of two metrics, with
the expected failure probability varying for all jobs, E½g�. In
case of E½g� 6 0:2, it is hard to determine which policy is
generally superior to the others even with two objectives,
so that an optimal solution is rarely achieved if multiple
conflict objectives are considered. On the other hand, REP
and STMP could be better approaches to cope with
resource failures, when E½g� gets closer to 0.7. However,
the costs for occupying redundant backup resources
remain uncertain and results are variable even under the
similar value of E½g�. Nevertheless, the existing fault-
tolerant scheduling schemes dependent on one static
policy have paid less attention to the different aspects of
other policies. These technical issues present significant
challenges to a scheduling scheme and have motivated
us to formulate MPDP and to propose a promising
mGA-based MJS scheme.
0 1 2 3 4 5 6 7
x 105

0

10

20

30

40

50

60

70

Makespan (sec)

A
ve

ra
ge

 J
ob

 F
ai

lu
re

 R
at

e
(%

) IRP
SLMP
STMP
REP

E[η] = 0.1 E[η] = 0.7

Fig. 1. Comparison of fault tolerance levels of different rescheduling
policies with variation of VðDtÞ in homogeneous policy based DCS; the
average job failure rate is calculated as number of failed jobs

number of all jobs � 100ð%Þ and the
makespan is defined as maxf~cij8i #Jg, where ~ci denotes the completion
time of ji .
3. Problem definitions

3.1. Multihybrid policy decision problem

In a fault-tolerant job scheduling context, a multihybrid
policy decision problem (MPDP) can be defined as finding
the optimal (most feasible) schedule Sopt for all batch jobs
J under heterogeneous rescheduling policies P. That is,

si : ji # Ai; 8si # Sk;

Ai ¼ frx; rk; . . . ; rlg; Ai � R;

where Ai denotes a set of allocated resources to ji. The
assignment of ji to Ai is represented by the mapping
symbol # according to the ith sub-schedule si, which is
an element of an arbitrary schedule k; Sk. Based on the
primary-backup fault tolerance model [24], if ji is
assigned to more than one resource, then ji is classified

into two classes: primary copy j1
i and backup copies

jk
i ; k ¼ 2;3; . . . ; jAij. Those copies for ji belong to a job

chain i; Ji and are scheduled by a single policy pi that is
commonly adopted by Ai as pi ¼ \rp #Ai

Pp; pi # P.

Remark 1. This means that the quality of scheduling jobs
dynamically varies according to the combinations of J ; R,
and P. Thus, the MPDP is considered as a combinatorial
optimization problem.

In the MPDP, Sk � S must satisfy the following two con-
straints with respect to the exclusive use of resources
among job copies in order to guarantee the system fault

tolerance, where S denotes the solution space. Let rðjk
i Þ

denote a resource that is scheduled for jk
i and let Tðjk

i Þ
denote a time slot assigned to jk

i .

C1: 8ji #J ; rðjk
i Þ– rðjq

i Þ; k – q;

C2: rðjk
i Þ ¼ rðjc

uÞ; Tðjk
i Þ \ Tðjc

uÞ ¼ Ø:

The constraints regarding control dependency, in turn,
ensure the following: (C1) A system tolerates the job
abortion caused by a resource failure, if and only if, the

precedent copy jk
i and the backup copy jq

i of ji are respec-
tively allocated to two different resources, when a failure
occurs. (C2) This constraint implies that overlapped execu-
tion is not allowed for two different copies since only one
job can be assigned to a resource at an instance of time.

Remark 2. MPDP with the above instance is strongly
NP-complete because the volume of its search space to be
explored is OðN!MNÞ, even though jPj ¼ 1 and a failure
does not occur. It is hard to confirm whether an optimal
solution Sopt � S is achieved by a deterministic approach
(e.g., an approximate algorithm) in the MPDP.
3.2. Optimal schedule for MPDP

The goal is to determine Sopt delivering mutually and
fairly optimized performance in three respects: makespan,
load balance, and robustness. To assess the quality of a

2 Si #Sf is said to be Pareto optimal if and only if Sj #Sf such that 8Si; Sj

ði – jÞ; ZðmjÞ ¼ ZðmiÞ with strict inequality under at least one condition,
ZðujÞ < ZðuiÞ.

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 85
given kth schedule, Qsch
k , we need to transform different

quantities of the first two objectives into the same domain
in which they are normalized and are then combined by
the weighted sum method as follows:

Q sch
k ¼ d

mmax �mk

mmax �mmin

� �
þx

uk � umin

umax � umin

� �
; ð2Þ

where mk and uk denote the makespan and the standard
deviation of utilization of Sk. Also, mmax (umax) and mmin

(umin) specify the maximum value and the minimum value
of makespan (average utilization), respectively. To com-
pute mmax; mmin; umax, and umin, we solve single-objective
optimization problems with a similar configuration of
J ; R, and P by maximizing and minimizing the
corresponding objective. Weights d # ½0;1� and x # ½0;1�
correlate to their importance respectively, where
dþx ¼ 1. For gradual changes in the weights, we also
set d to j sinð2pt=f Þj, where t is the time period and f is
the change frequency of d.

The larger Qsch
k guarantees the better scheduling

performance. Due to the conflicting nature of the objec-
tives, different schedules produce trade-offs between mk

and uk, in which the upper bound of one is relaxed and
the other is re-optimized for each generation of the
optimization process. As such, there could be a set of mul-
tiple feasible solutions in each stage of the optimization
process. To exclude the dominated solutions, we further
penalize inferior solutions regarding a job failure rate fk

by reducing their Q sch
k values in proportion to their degrees

of the following constraint violation:

C3: ~ri 6 ~s1
i < ~cjAi j

i 6
~di;

where ~ri; ~s1
i , and ~cjAi j

i denote the release time of ji, the start

time of j1
i , and the completion time of jjAi j

i , respectively. For

8jk
i # Ji; ~cjAi j

i ¼ E maxf~ck
i g

� �
> ~di means that the execution of

ji is failed. However, counting the failures gives unfair
importance to the jobs unless the jobs are of equal critical-
ity, so that the standard deviation of fk; rðfkÞ, could be a
better measure of how unfair Sk is to 8ji #J . Let
Zð�Þ# ½0;1� denote a normalization function for mk and uk.
Then, the reformulated quality assessment function is
given by

Q sch
k ¼ d � ZðmkÞ þ ð1� dÞ � ZðukÞð Þ þ �ðgÞ � rðfkÞð Þ: ð3Þ

In Eq. (3), �ðgÞ represents a penalty coefficient for Sk

provided in the gth generation and is assumed to be
dynamically adjustable for each generation. The level of
�ðgÞ is controlled as

�ðgÞ ¼
min ðrðf̂hÞÞ if g ¼ 0;

�ð0Þ 1� g
gmax

� �
if 1 6 g < gmax;

0 if g P gmax;

8>><
>>: ð4Þ

where rðf̂hÞ is the standard deviation of failure rate of the
top hth solution and h is set to 20% of initial solutions. Once

�ð0Þ is set, �ðgÞ decreases in proportional to 1� g
gmax

� �
,

when g gets closer to gmax. For the higher g, the smaller
�ðgÞ would be applied to evaluate the quality of solutions.
If any solution fails to evolve in a better direction, its
quality is assessed to be degraded. In case of g P gmax,
the optimization process stops; thus, �ðgÞ ¼ 0. This �-level
controlling method does not require knowing a priori

the preference of fk and can give Qsch
k a reward in case of

rðfkÞ < �ðgÞ.

Lemma 1. With a systematic variation of �ðgÞ, two feasible

solutions such that Qsch
i 	 Qsch

j ðSi; Sj #Sf Þ can be compared
in terms of a robustness metric, where every schedule in Sf

satisfies C2 and C3.
Proof. Although the optimal solutions of MPDP provide
the points ðmk;ukÞ of the Pareto optimal solutions,2 some
of them may not satisfy C3 to a certain extent. In this case,
Eq. (4) gives us a way of measuring a degree of constraint
(C3) variation. Specifically, this method helps an optimiza-
tion process select a particular solution based on additional
preference information, rðfkÞ about the two objectives by
varying the value of �ðgÞ systematically. Hence, a set of
mostly non-dominated solutions Sopt can be obtained with
respect to the three metrics of makespan, load balance,
and failure rate. h
4. The proposed job scheduling scheme for MPDP

The purpose of a multihybrid job scheduling (MJS)
scheme is to confidently guarantee Sopt for the problem
MPDP. Due to its NP-completeness as discussed in
Remark 2, we first construct the MJS scheme, according
to the stochastic search operations of mGA, as described
in Algorithm 1. However, particular logic, such as initial-
ization and evaluation, strongly depend on what problem
should be solved. On account of the inherent specialty of
MPDP, we then propose two processes for solution repre-
sentation and realization. The former codifies a schedule
to MPDP and the latter computes sequences and time slots
of each job, in order to make mGA compatible with MPDP.
One key factor to consider is that these processes must not
contribute to the increase of the computational complexity
of the MJS scheme.

4.1. Solution representation process

A schedule conforming with C1, C2, and C3, Sk � S, (ter-
med a chromosome in mGA) has a unique combination of
three factors, J ; R, and P in MPDP. To codify a solution to

MPDP, we define a new real-coded encoding schema �Erc , in
which si # Sk is represented by 2-tuples referred to as a
gene, such as (job index i, resource index x); hence, Sk is a
set of randomly generated pairs. For ease of demonstrating
�Erc , we assume that a policy commonly adopted by a set of
some resources is known and for example, a given chromo-
some k; chk, is easily translated into Sk as shown in Fig. 2.

Fig. 2. An example of translating chk into Sk in the Gantt chart.

86 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
In chk; j1
3 is allocated earlier to r1 than j1

2 because the
execution order of jobs is read by the order of appearance

in chk and j2
3 is also migrated to r3 if its p3 is SLMP or STMP.

Since j1 and j4 are allocated to one resource, they will be re-

executed by IRP if a failure occurs. Moreover, j1
2 is secondly

scheduled on r1 and then its copies j2
2 and j3

2 will be run in
parallel if its p2 is REP.
4.2. mGA-based MJS operations for solution reproduction

Algorithm 1 illustrates that mGA evolves an initial pop-
ulation of possible solutions to MPDP being solved by
means of reproduction operations under the principle of
the survival of the fittest. We briefly explain each phase
of the proposed mGA-based MJS scheme.

Algorithm 1. mGA-based MJS operations

Require: 8ji #J ; li; 1 6 i 6 N; R; cx; 1 6 x 6 M;

P; gð�Þ; g ¼ 0

Generate Pg according to �Erc while abiding with C1
while g 6 gmax do

f u = Evaluate ðchuÞ, 8chu # Pg ; 1 6 u 6 U;
If 9chu # Pg satisfying that f u P f th then

chopt chu and break;
end if
ðcha; chbÞ Select parents by PrselðchuÞ;
cho Cut-and-Spliceðcha; chbÞ;
ĉho MutateðchoÞ and then add ĉho in Pgþþ;

end while
If g P gmax then

chopt chu such that maxff u;u # ½1;U�g;
end if

Output: Translate chopt into Sopt;
Start to dispatch J according to Sopt;
(i) Initialization. Based on �Erc , mGA starts with a set of
contending trial solutions, the initial population
Pgðg ¼ 0Þ, which is comprised of a fixed number of
chu; 1 6 u 6 U, where U is a fixed integer number.

(ii) Evaluation. To evaluate a fitness value for each
chu; f u, Evaluate(chu) (described in Algorithm 2) is
called in order to obtain f u. If f u is sufficiently large
enough compared to a predefined threshold f th, then
chu becomes an optimal allocation chopt and this
procedure is finally terminated.
(iii) Selection. Otherwise, chromosomes having relatively
higher fitness values should be selected by the

probability PrselðchuÞ ¼ f u

PU
u¼1

.
f u

� �
in a roulette-

wheel selection [12] to preserve superior solutions,
which would be evolved in the next generation.

(iv) Recombination. To obtain globally evolved solutions,
cut-and-splice swaps the first d genes between cha

and chb, where d is a positive integer, 1 6 a; b 6 U
and a – b, producing offspring cho. To explore local
solutions, mutation is then performed by randomly
exchanging two genes within each cho. After these
two operations, we can have more feasible offspring

ĉho in the next generation Pgþþ.
(v) Termination. All phases are iterated until f u P f th or

g P gmax is satisfied. All of the operations must abide
with the two constraints (C1 and C2).

The mGA-based MJS scheme is described by a stochastic
process that evolves over time in a probabilistic manner to
search an optimal state, chopt . Since its intermediate
transitions do not depend on the time, they have Markov
properties and are homogeneous [25].

Lemma 2. We consider that the population size, P and the

cardinality of the state space, jSjP are finite. Assuming that
the above operations are treated as a random transition from

SP to SP , Algorithm 1 finally converges to chopt regardless of
the search space.
Proof. We will prove Lemma 2 by establishing the connec-
tion between the limiting behavior of Markov chains and
the stochastic convergence of a random population.
Through finite Markov chains, when g !1, its state transi-
tion matrix Pst converges to a unique stable matrix P1st , which
is the product of state transition matrices caused by the
operations, regardless of the initial distribution of the
population, p0 (stationary). For arbitrary p0, there is a unique
limiting distribution, p1 ¼ limg!1p0P1st ¼ p11 ; p

1
2 ; . . . ;

�
p1SP ;0; . . . ;0Þ, where p1i is the probability that the limiting
state is at ith state of SP . Therefore, the probability of the
limiting state being in global optimal states is obviously

one, i.e.,
PjSjP

i¼1 p1i ¼ 1. This means that there must be at least

one chopt , when g!1. h
Remark 3. mGA generally satisfies the following prop-
erty: Pr½chuþ1 � Popt jchu # Popt � ¼ 0ð8u ¼ 0;1; . . .Þ, where
Popt stands for a population containing at least one chopt .

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 87
This property implies that mGA never loses chopt once it
has been found during the evolution of a population.
Thus, mGA can be modeled by an absorbing Markov
chain.
4.3. Solution realization process

Although, in practice, computation times are not
deterministic as discussed in [1], each chu needs to be
identified in terms of the (i) sequences and (ii) execution
times of job copies in order to evaluate (iii) its quality.
This fact further requires a new approach for solution
realization (i.e., decoding and evaluation). In the proposed
mGA-based MJS scheme, each of the above factors is
achieved by the three functions of decideSequence(),
estimateProbExeTime(), and assessSchedQuality(), as described
in Algorithm 2.

4.3.1. decideSequence() under precedence constraints

In the example of chu addressed in Section 4.1, j2
3 would

be declaimed at r3 and then a state of Tðj2
3Þ would be

updated as idle, if j1
3 is successfully completed (passive

rescheduling). On the other hand, j2
2 and j3

2 should be

invoked regardless of j1
2’s execution result (active

rescheduling). As it stands, invocations of backup
copies depend upon the success or failure of their direct
predecessor and the commonly adopted rescheduling
policy due to the precedence constraints, which define a
partial order between job copies in the same job chain.
For clearly indicating which resource is allocated to a

particular job copy, hereafter we add the subscript x to jk
i

as jk
i;x; however, we often drop the argument of job copy

when it is clear from the context.

Algorithm 2. Evaluate(chu)

Require: 8chu # Pg ; 1 6 u 6 U;
for 9chu # Pg do

decideSequence();
estimateProbExeTime();

Qsch
u assessSchedQuality();

end for

Output: Return Qsch
u ;
Definition 3. If jw
u is scheduled immediately prior to jk

i on
the same resource and is associated with Ju other than Ji,

it is said to be an adjacent copy of jk
i .
Lemma 3. Let cðjk
i;xÞ and pðjk

i;xÞ denote a completion state of

jk
i;x and a policy mode adopted for reallocating jk

i;x, respectively,

where cðjk
i;xÞ is either success (1) or failure (0); and pðjk

i;xÞ is

either active (1) or passive (0). The start time of arbitrary jk
i

scheduled on ry (denoted by ~sk
i;y) can be achieved by con-

sidering cðjk�1
i;x Þ and pðjk

i;yÞ, where x – y as
~sk
i;y ¼

null if cðjk�1
i;x Þ ¼ 1 ^ pðjk

i;yÞ ¼ 0;

maxð~f k�1
i;x ;~f w

u;yÞ if cðjk�1
i;x Þ ¼ 0 ^ pðjk

i;yÞ ¼ 0;

minð~rk
i;y;

~f w
u;yÞ otherwise:

8>><
>>: ð5Þ

Proof. We prove Lemma 3 by introducing precedence

constraints between jk
i;y, its direct predecessor jk�1

i;x , and its

adjacent copy jw
u with three cases. (a) If jk�1

i;x finishes
without any failure and rescheduling follows a principle

of linear job allocation, jk
i;y would be de-allocated; thus,

~sk
i;y is null. (b) If jk�1

i;x fails to complete its execution under

a passive policy such as IRP, STMP, and SLMP, jk
i must be

released on ry after its predecessor’s failure time ~f k�1
i;x .

Also, there may be jw
u . In this case, ~sk

i;y would be set imme-

diately after its adjacent copy’s failure time ~f w
u;y to avoid the

overlapped run. (c) For an active policy (i.e., REP), jk
i;y has

priority over jw
u;y, if the scheduled allocation of jk

i;y is over-

lapped with that of jw
u;y ð~sw

u;y < ~sk
i;y <

~f w
u;yÞ. Otherwise, jk

i;y

can be started immediately after its release time ~rk
i;y. h

Therefore, Lemma 3 implies that in chu; ~ck
i;y is also calcu-

lated by adding ~sk
i;y to its execution time, so that Tðjk

i Þ on ry

can be realized. The time complexity of decideSequence() is
bound to OðPMNF log NFÞ 	 OðMN log NÞ in the evaluation
phase, where N and F denote the total number of jobs and
the average number of failures for each job, respectively,
with P and F as constants. In addition, OðN2MÞ is the worst
case complexity of this sub-algorithm, when F P N.
However, N
 F is a more appropriate assumption that
can be supported by the realistic workload [14] and the fail-
ure trace archives [3]. Hence, the worst case is rarely
expected, and essentially meaningless, in practical dis-
tributed computing.

4.3.2. estimateProbExeTime() with different policies
We now propose a method for estimating a probabilis-

tic execution time (PET) of each job copy under four differ-
ent fault-tolerant scheduling policies. In this section, we

define PETpi ði; k; xÞ as a PET of jk
i that is assigned on rx by

pi, where it is computed by the sum of the expected execu-
tion time ðeetk

i;xÞ and the expected waste time ðewtk
i;xÞ. A PET

for ji is finally obtained as PETpi ðiÞ ¼
P

rx #Ai
PETpi ði; k; xÞ.

(1) IRP – Since we suppose that a failure is transient, IRP
uses the random exponential back-off strategy to grace-
fully back off jobs on resources as deployed in [18].
Retries should occur at intervals that increase exponen-
tially but with some random variation. Fig. 3(a) shows that
jobs arriving within a given scheduling cycle time tsc are
queued for setup time twq and then the proposed MJS

scheme attempts to re-dispatch jk
i at the same rx until a

failure no longer exists. By definition of expectation
E½��; eetk

i;x and ewtk
i;x can be predicted, respectively, as

follows:

eetk
i;x ¼ E½~ck

i;x � ~f k�1
i;x � ¼ ~li;x; ð6Þ

88 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
ewti;x ¼
Xk�1

l¼1

ewtl
i;x ¼ E½~f k�1

i;x � ~s1
i;x� ¼

Xk�1

l¼1

gð~f l
i;xÞ � awti;x; ð7Þ

where ~ck
i;x and ~f k�1

i;x denote the completion time of jk
i and the

failure time of jk�1
i assigned on rx, respectively. gð~f l

i;xÞ is a
probability that the lth job copy of ji is failed at a given

time ~f l
i;x. Suppose that a resource failure is uniformly dis-

tributed. The average waste time of ji;x; awti;x, can be

expressed as
~li;x
2 because a failure may or may not occur

within an assigned time slot. Then, the expected waste

time of jl
i;x; ewtl

i;x ð1 6 l < kÞ, can be expressed as

gð~f l
i;xÞ �

~li;x
2 . Eq. (7) thus means the total waste time of ji

due to the k� 1 failures. Then, we have PETIRPðiÞ as follows:

PETIPR
rx #Ai

ði; xÞ ¼ ~li;x þ~li;x �
Pk�1

l¼1 gð~f l
i;xÞ

2

¼ li
cx
� 1þ

Pk�1
l¼1 gð~f l

i;xÞ
2

 !
: ð8Þ

(2) STMP – In general, STMP involves two types of
migration overheads imposed by data movement and
state-tracking, as illustrated in Fig. 3(c), where we assume
that ji is scheduled to be migrated from rx to ry.

Data transferring delays. Unlike IRP, the transfer time
of job data can be considered the main overhead when a
failure occurs. Such a network delay is formulated as

Dk
i;x!y

rx ;ry #Ai
x–y

¼
0 if rx ¼ rjAi j;

mk
i

q�x;y
;q�x;y ¼

Pp

i¼1
liPp

i¼1

qi
li

otherwise:

8<
: ð9Þ

In Eq. (9), the data transferring delay of ji between rx and ry

(denoted by Dk
i;x!y) is calculated by dividing mk

i by q�x;y,

where mk
i and q�x;y represent the data size of jk

i and the
adjusted transmission rate between rx and ry, respectively.
q�x;y particularly illustrates the network behavior in terms

of the transmission rate qi and the failure rate li of jk
i on

all links from 1 to p in the path between rx and ry.
Fig. 3. An illustration of rescheduled job copy in
State-tracking overheads. During the job processing, a
state-tracking server periodically writes checkpoints and

updates states of executing jk
i on rx. If a failure is detected,

the MJS scheme attempts to reserve a secondary resource
ry from Ai. Then, job and relevant data are transferred to
ry. Finally, ry reads a previously-saved checkpoint from
the state-tracking server to compute a remaining length

of jk
i and then restarts jk

i at a failed point. An equation for

calculating the state-tracking overhead of jk
i;x; Ok

i;x, is
derived as

Ok
i;x ¼ nk

i � ox; ð10Þ

where nk
i and ox denote the number of state traces and a

unit overhead required for performing one checkpointing
operation, respectively. ox is inversely proportional to cx

and nk
i is calculated differently in two cases, as given by

nk
i ¼

~lk
i;x
sx

	

if cðjk

i;xÞ ¼ 1;

awtk
i;x

sx

	

if cðjk

i;xÞ ¼ 0:

8>>><
>>>:

ð11Þ

In Eq. (11), sx in the denominator represents a period of
time spent by each checkpointing operation on rx and we
assume that sx is identical to all resources. nk

i is calculated

by dividing ~lk
i;x by sx if there is no failure during the execu-

tion of jk
i;x. Otherwise, awtk

i;x should be considered instead of

using ~lk
i;x because a failure causes slowdown of its

execution.
For ease of description, hereafter we separately denote

the state-tracking overhead of jk
i failed at rx as �Ok

i;x. The

remaining length of jk
i;y; vkþ1

i;y , is then calculated by sub-

tracting its elapsed time from the original size of ji; li.
Thus, vkþ1

i;y is given by

vkþ1
i;y ¼ li �

awtk
i;y

sy

$ %
� sy � oy

 !
: ð12Þ
(a) IRP, (b) SLMP, (c) STMP, and (d) REP.

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 89
From Eqs. (9)–(11) we can derive eetk
i;x and ewtk

i;x as

eetk
i;x¼ E ~f k

i;x�~sk
i;x

h i
¼uð~sk

i;xÞ � ð1�gð~f k
i;xÞÞ � ð~lk

i;xþOk
i;xÞ

� �
; ð13Þ

ewtk
i;x ¼ E ~ck

i;x � ~f k
i;x

h i

¼ uð~sk
i;xÞ � gð~f k

i;xÞ �
~lk

i;x

2
þ �Ok

i;x þ Dk
i;x!y

 ! !
; ð14Þ

uð~sk
i;xÞ ¼

1 if k ¼ 1;Q
y #Ai

gð~f kþ1
i;y Þ if 9jkþ1

i;y such that ~f kþ1
i;y 6

~f k
i;x;

(

ð15Þ

where uð~sk
i;xÞ and gð~f k

i;xÞ specify a probability of continu-

ously processing jk
i;x after ~sk

i;x and a probability of job failure

at ~f k
i;x, respectively. As described in Eq. (15), uð~sk

i;xÞ is given

by the product of the failure probabilities of jk
i ’s predeces-

sors. If jk
i is a primary copy ðk ¼ 1Þ; uð~sk

i;xÞ is equal to 1.
Therefore, a PET of ji controlled by STMP is achieved as

PETSTMP
rx ;ry #Ai

ði;k;x! yÞ ¼uð~sk
i;xÞ�

ð1�gð~f k
i;xÞ

� �
�

vk
i;x

cx
þ

vk
i;x

cx
� 1
sx

$ %
� ox

 !(

þgð~f k
i;xÞ �

vk
i;x

2cx
þ

vk
i;x

cx
� 1
sx

$ %
� ox þ

mk
i

q�x;y

 !)
:

ð16Þ

We note that, with the exception of state-tracking
overheads, the PET of a SLMP-ruled job copy (see
Fig. 3(b)) can be calculated in a similar manner to STMP.

(3) REP – This replication strategy simultaneously
distributes workloads to assigned resources. Fig. 3(d)
shows that three redundant job copies (i.e., replicas) are
executed on rx; ry, and rz in order to completely finish at

least one. jk
i;y starts running at ~sk

i;y, then rz also has to

process jkþ1
i;z at ~skþ1

i;z because jk
i;y may be failed at any time.

If jk
i;y is abnormally aborted at ~f k

i;y then jkþ2
i;x subsequently

has to be executed from ~skþ2
i;x . However, if we assume that

jkþ2
i;x fails at ~f kþ2

i;x as well, then jkþ1
i;z must proceed. In the

end, only jkþ1
i;z is successfully completed at ~f kþ1

i;z .
Replicas. Due to the parallel precedence constraints, we

classify these job copies into two types, a normal replica
and a cut replica. Specifically, an arbitrary job copy jw

i;q in
Ji can be recognized as a cut replica if the following condi-

tion is satisfied: ~sk
i;p 6

~f w
i;q <

~f k
i;p, where k P 1; w 6 jAij;

rp; rq #Ai, and p – q. For instance, jkþ1
i;z is cut twice by the

other replicas at ~f k
i;y and ~f kþ2

i;x , respectively; so, jkþ1
i;z is a cut

replica and the others are normal ones. Calculating a PET

of jkþ1
i;z requires a different technique, while PETs for jkþ2

i;x

and jk
i;y can be derived in the same way as estimating

PETs under the other policies. According to the two cut
points, eetkþ1

i;z is divided into three parts such as Da; Db,
and Dc:
E½~f kþ1
i;z � ~skþ1

i;z � ¼ Daþ Dbþ Dc

¼ uð~skþ1
i;z Þð~f k

i;y � ~skþ1
i;z Þ þuð~f k

i;yÞð~f kþ2
i;x

� ~f k
i;yÞ þuð~f kþ2

i;x Þð~f kþ1
i;z � ~f kþ2

i;x Þ

¼ ð~f k
i;y � ~skþ1

i;z Þ þ gð~f k
i;yÞð~f kþ2

i;x � ~f k
i;yÞ

þ gð~f k
i;yÞgð~f kþ2

i;x Þð~f kþ1
i;z � ~f kþ2

i;x Þ: ð17Þ

Assuming that the maximum number of failures is set
to 3 for each job copy, we then generalize the PET estima-

tion formula for a cut replica ðjkþ1
i;z Þ as follows:

PETREP
rz #Ai

ði;kþ1;zÞ¼uð~skþ1
i;z Þð~f i;u�~skþ1

i;z Þþ
X

x;y#Ai;16 rx;ry 6 jAij
~skþ1

i;z 6
~f k

i;y <
~f kþ2

i;x 6
~f kþ1

i;z

~f k
1;y 6

~f w
i;r <

~f kþ2
i;x ;:9~f w

i;r

uð~f k
i;yÞð~f kþ2

i;x �~f k
i;yÞ;

where~skþ1
i;z <~f i;u ;~skþ1

i;z 6
~f i;v <

~f i;u ; :9~f i;v ; uð~f k
i;yÞ¼

Y
ry #Ai ;

~f k
i;y
6~skþ1

i;z

gð~f k
i;yÞ: ð18Þ
4.3.3. assessSchedQuality() for fitness comparison
The third function of the evaluation phase uses Eq. (3) in

order to assess the quality of each chu # Pg ; 1 6 g 6 gmax,
where the three objectives such as mu; uu, and rðfuÞ should
be calculated from each chu. By iteratively estimating each
copy’s PET in chu, the completion time of rx; Cx, is calcu-
lated by

P
rðjki Þ¼rx

PETpi ði; k; xÞ. Then, mu is obtained by

maxfCxjrx #Aig and the average utilization of each resource
is equal to

P
rx #Ai

Cx=ðmu � jAijÞ. Further, rðfuÞ can be
derived by definition of standard deviation. Therefore, by

using Eq. (3), Q sch
u can be evaluated. Then, chopt is finally

achieved by chopt
Pg chu such that maxff u;u # ½1;U�g

when f u P f th or g P gmax.

5. Analysis of the proposed job scheduling scheme

Now we turn our attention to the algorithmic searching
performance of the proposed scheme relative to its
computational complexity. Since the computational com-
plexity of the proposed scheme is a property of both
mGA (search operations) and MPDP (solution realization
process) in practice, rather than identifying that of mGA
only, the computational time requirement of the former
can be calculated as below.

� In the population initialization phase, a solution has
NðF þ 1Þ genes, where F is an integer; it is assumed
to be the same for 8j #J . Each gene is randomly
selected from possible job and resource pairs; its result-
ing complexity is OðPNMðF þ 1ÞÞ. Since P and F are
both treated as constants, this operation has complexity
OðNMÞ. The roulette-wheel selection sorts individual
solutions in descending order by their quality in each
generation, so that the complexity is OðgmaxP logðPÞÞ.
gmax and P are set as constants, respectively. Thus, the
selection operation has complexity Oð1Þ.
� The cut-and-splice operator is used pcP

2 times, where pc

is the probability of choosing d (0 < d 6 NðF þ 1Þ)
genes in each solution as discussed. However, pc and
P are all constants. Therefore, its complexity is deter-
mined by the length of a solution, NðF þ 1Þ because this

90 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
operator needs to read all genes in each solution. This
operator has complexity OðNÞ. The mutation is invoked
pmP times, where pm is a probability of randomly visit-
ing two genes in each solution and both pm and P are
constants. Thus, its complexity is bound as Oð1Þ.

Second, we also consider the proposed solution realiza-
tion process that consists of the three functions for quality
evaluation incorporated into the mGA search operations.

� Specifically, realizing 8chu # Pg in terms of time
slots can be completed without contributing to the
increase of the complexity of performing mGA on
MPDP. As mentioned in Lemma 3, the complexity of
decideSequence() is bounded by OðMN log NÞ. Those of
estimateProbExeTime() and assessSchedQuality() are both
bounded by OðNÞ as well. Namely, the solution realiza-
tion process can be done by the logarithmic time in N,
even though the evaluation is the most complicated
phase, in order to solve MPDP by using mGA.

Therefore, we see that the proposed solution realization
process dedicated to solving MPDP does not contribute to
the increase of the overall complexity of mGA.

On the other hand, Lemma 2 shows that convergence to
the optimum is achieved in a manner of stochastic nature.
However, we note that this result does not directly indicate
the probabilistic possibility of convergence, which is
considered as the quality of approximation in MPDP. To
this end, we focus on the fact that the convergence rate
of mGA-based MJS scheme to Popt is decided by recombina-
tion operators in MPDP, which adjusts the tradeoff
between diversity and convergence of chromosomes as
discussed in [12].

Theorem 1. The proposed MJS scheme converges to chopt in
probability after a finite g generations, if the recombination
phase in mGA (denoted by recð�Þ) fulfills the following

assumption: A1. Let nðPgÞ¼maxfQsch
k :k¼1; . . . ; k; 8chk #Pgg

and Pr½nðrecðPgÞÞ¼nðPgÞ�¼1, where recðPgÞ¼Pgþ1.
3 In order to organize the job scheduling model in DCS, these measures
are injected into GridSim, in a form of the extended GridLet that specifies
distribution models for jobs, resources, and failures, respectively.

4 The variability of job sizes is expressed as a variation coefficient (K) of
the bounded Pareto distribution, denoted by BPððpmin; pmax; pexpÞ, where pmin

and pmax are the minimum and the maximum job sizes (MFLOPs), and pexp

is the exponent of the power law. If the parameters are given, K can be
determined.

5 For this measure, the Weibull distribution, denoted by Wða; bÞ, is used,
where parameters determine the scale and shape of the distribution,
respectively [14].
Proof. This assumption which is inferred from Remark 3
means that the chromosome with the highest fitness
value would survive after the recombination phase
performs. We also suppose that there exists a finite short-
est path gk from an arbitrary chk � S� to chopt

S�, where
S� #S is the set of globally optimal chromosomes (i.e.,
solutions). Let ĝ ¼ maxfgk : 8chk � S�g and let Q � be the
globally maximum fitness value. If the probability of
visiting Q � after ĝ generations is at least # > 0, then the
probability that Q � has not been found after g generations

is at most ð1� #Þbg=ĝc.
Since A1 guarantees that the best offspring will be a

parent of the next generation, it can be asserted that

Pr½Q � � nðPgÞ > 0� 6 ð1� #Þbg=ĝc
;

and ð1� #Þbg=ĝc exponentially goes to 0 as g !1.
Therefore, Q � will be achieved for the first time after a
finite number of generations, according to Algorithms 1
and 2. h
In Theorem 1, the assumption above is reasonable
because the quality of a found solution does not monoto-
nously grow when g increases. This implies that the
proposed mGA-based MJS scheme is a promising optimiza-
tion method to solve MPDP. In fact, compared to the idea-
lized situations discussed in [25], the quadratic time
complexity for a super-exponentially scaled MPDP problem
does not seem bad even if N is large and all jobs unreal-
istically experience at least one failure, that is F P N.
Because of this the computational complexity of the pro-
posed mGA-based MJS scheme is relatively acceptable.
Therefore, the proposed scheme can efficiently solve
MPDP even though different rescheduling policies might
be involved at the same time.

6. Performance evaluation

In this section, we have carried out a simulation study
on the proposed mGA-based MJS scheme with different
configurations that are unique combinations of four main
factors: a used policy, a search algorithm, a distribution
of job size, and a level of policy heterogeneity. For the pur-
pose of consistency, the proposed approach will be
referred to as a multihybrid job scheduling policy (MJSP),
if it is necessary.

6.1. Simulation setup

For the trace-driven evaluation, we have implemented
the proposed MJS scheme comprised of the two proposed
processes for solution representation and realization on
the real-coded mGA [17]. Then, we have integrated the
MJS scheme with GridSim [26]. This simulation is designed
to quantitatively evaluate the superiority of the MJS
scheme in the policy-constrained DCS. For this, the average
value of the corresponding metric is used to obtain every
single point in resulting plots by performing the same
simulation 200 times. We thus confine our focus to two
different scenarios: DCS with identical policies and DCS
with heterogeneous policies. These commonly include
the following measures3:

� An size of job i; li, can be measured in computa-
tional units called million floating point operations
(MFLOPs). Thus, the availability of resource x; cx, is
defined as the number of MFLOPs per unit time needed
to process. The workload model measured and analyzed
in [10,14] is used to generate a synthetic set of sequen-
tial batch jobs in consideration of statistical properties,
such as job size,4 job data size, job size distribution, and
inter-arrival time.5 The failure model used in this

Table 2
Parameter configuration in the simulation.

Parameters Symbols Values

Inter-arrival time – Wð4:25;7:86Þ
Job size li BPð0:1� 106; 3� 106; 1:2Þ
Job data size mk

i
0.3–0.8 MBytes

Resource availability cx 100–500 FLOPS
Level of resource failure gð�Þ 0.1–0.7
Average bandwidth q�x;y 5–100 Mbps
Population size P 100
The maximum number of
generations

gmax 500

Mutation probability pm 0.25
Cut-and-splice
probability

pc 0.18

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 91
simulation is based on failure trace archives [3]. From the
traces, we derive the values of shape parameter b and
scale parameter a, which are equal to 0.58 and 2.18,
respectively. Also, the maximum number of consecutive
failures for each job is set to 3 [5].

� Let Wi;x ¼
~li;x

MaxM
x¼1f

~li;xg
be a weight of rx, which refers to its

computational capability relative to the fastest resource
when it dedicatedly executes ji. So, the heterogeneous
capability (denoted by H) of resources are defined as

H ¼
P

x¼1�M
ð1�Wi;xÞ

M . We set 1 in H, resulting in the avail-
ability of the most-capable resource being on average
four times higher compared to that of the slowest
resource.
� Applied mGA parameters such as mutation rate,

cut-and-splice rate and population size originate from
the empirical studies on genetic algorithms [12,17].
Every single point of the metrics in plots has been
extensively computed by the proposed MJS scheme
with 200 resources and 2000–10,000 jobs. Resources
are assumed to be uniformly distributed in 10 ADs
and support the rescheduling policies for fault-tolerance.

To reflect on the dynamics and complexity of MPDP, we
attempt to impose randomness to the proposed MJS
scheme by varying the above measures. The parameter
configuration commonly used in this simulation is
summarized in Table 2.
2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5 x 106

Number of Jobs

M
ak

es
pa

n
(s

ec
) IRP

SLMP
STMP
REP
MJSP

(a) Makespan

2000 4000 60
40

50

60

70

80

90

100

Numbe

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

IRP
SLMP
STMP
REP
MJSP

(b) Average

Fig. 4. Average quality in homogeneous policy environments. IRP, SLMP, STMP
results are all produced by applying our mGA. We further assume that resource
6.2. Comparison of scheduling quality

The purpose of this section is to assess the average qual-
ity of the schedules generated by mGA with the four static
policies and the proposed MJSP in terms of the three met-
rics such as the makespan, the average utilization, and the
job failure rate (as discussed in Eq. (3)) under the homoge-
neous policy-constrained DCS. On average, the proposed
MJSP clearly improves the makespan by 115–252% and
maintains the average utilization most stably, up to 82%,
as shown in Fig. 4(a) and (b), respectively. Fig. 4(c) also
illustrates that MJSP is the most robust approach, com-
pared with the other policies, in coping with unexpected
availability fluctuations due to failures. A proprietary
allocation rule for each policy possibly causes the job inter-
ference phenomenon under precedent constraints; a wide
range of network variation in terms of bandwidth may
impose lots of resource fragments in availability. As a
result of that, the makespan sharply increases immediately
after 8000 jobs in the all policies, although the target jobs
require loosely-coupled intercommunication. These facts
indicate that MJSP guarantees the optimal selective use
of inherent benefits of each static policy. Simulation results
demonstrate the following observations.

It seems that IRP-ruled jobs suffer from severe starva-
tion because IRP does not provide a method to fairly cope
with jobs with respect to waiting time when a failure
occurs. This is the main reason why IRP proves to be the
worst case on all of the metrics. In SLMP and STMP, when
re-dispatching terminated jobs to reserved backup
resources, the migrant job should be held in a job-ready
queue until the previously running job on the backup
resource is finished. This feature leads to a relatively high
job failure rate compared to REP and MJSP. In particular,
STMP involves state-tracking overheads; however, it can
reduce PET by reactivating the exact residual job only.
Due to this advantage, STMP shows better performance
than SLMP, although it requires additional costs for job
state traces. Since REP is designed to successfully complete
the jobs with high importance by executing the job replicas
in parallel, it shows a less than 16% job failure rate, even
with 10,000 jobs. However, its average utilization presents
insufficiently low levels as compared to STMP and MJSP.
00 8000 10000
r of Jobs
utilization

2000 4000 6000 8000 10000
0
5

10
15
20
25
30
35
40

Number of Jobs

Jo
b

Fa
ilu

re
 R

at
e

(%
) IRP

SLMP
STMP
REP
MJSP

(c) Job failure rate

, REP, and the proposed MJSP are presented for comparative study. Their
s support the all static policies in this simulation.

92 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
6.3. Efficiency of resource usage

With the exception of IRP, the use of the job duplication
approach obviously requires more backup resources. This
points to the fact that the efficiency of using redundant
resources for each job can be considered as a key criterion
to select an appropriate rescheduling policy in perspective
of resource providers. For this reason, we will now
investigate how much adding backup resources for job
re-execution contributes to improvement on a particular
metric for each of the individual policies. More specifically,
we consider two metrics in order to evaluate a degree of
efficiency in terms of makespan and average utilization,
respectively. First, the resource efficiency in makespan is
calculated as makespan improvement

mean number of resources used per job, where the make-

span improvement is expressed by a relative ratio of make-
span of used policy to that of IRP. Likewise, resource
efficiency in average utilization is then also determined.

Fig. 5 reveals that resource efficiency on makespan and
average utilization decreases when the expected failure
probability E½g� increases and, in general, scheduling solu-
tions generated by the four policies tend to be much more
effective in makespan (from 7.3% to 25.3%) as compared
with those in average utilization (from 2.3% to 14%).
When compared with REP, results from the two migration
policies show better performance improvement because
the parallel job execution of REP may require more
resources. Furthermore, we observe that MJSP’s resilience
even with a high failure level ð0:5 6 E½g� 6 0:7Þ is better
than STMP by 4.3% and 2.9%, respectively in both metrics.
In conclusion, we see that the MJSP succeeds in improving
the aforementioned performance without incurring an
unacceptable waste of resource usage.

6.4. Scheduling adaptability in the policy-constrained DCS

This section aims to study how the MJS scheme guaran-
tees the feasible performance with heterogeneous policy-
based resources, adaptively supporting a limited number
of policies.

Simulation setup. (i) We suppose that the four static
policies are deployed over 10 ADs with different ratios.
For example, a ratio of 1:3:1 indicates that 20%, 60%, and
20% of resources only adopt IRP, migration policies (SLMP
and STMP), and REP, respectively. We thus set the three
SLMP STMP REP MJSP
0
5

10
15
20
25
30

R
es

ou
rc

e
Ef

fic
ie

nc
y

in

0.1 ≤ E[η] < 0.3
0.3 ≤ E[η] < 0.5
0.5 ≤ E[η] ≤ 0.7

(a) Resource efficiency in makespan

M
ak

es
pa

n
(%

)

Fig. 5. Resource efficiency assessment. The average level of resource failure den
efficiency under different risk scales. Also, this simulation is conducted with 10
types of policy configurations pconfig 1 (3:1:1), pconfig 2
(1:3:1), and pconfig 3 (1:1:3) in order to take policy-
constrained DCS into account. (ii) To investigate potential
influences of different job size distributions on scheduling
performance, we further classify a corresponding config-
uration (short jobs: long jobs) into three classes such as
jclass 1 (8:2), jclass 2 (5:5), and jclass 3 (2:8) as discussed
in [23,17]. (iii) To evaluate the quality of generated solu-
tions, we then compare the proposed MJSP, based on
mGA (mGA-MJSP), with a minmin algorithm [13] based
MJSP, as an alternative scheme (minmin-MJSP).

Results. From Fig. 6, we observe that mGA-MJSP shows
lower sensitivity to changes in job size distribution
compared to minmin-MJSP in every category of policy con-
straints. To be precise, both schemes reach a peak value in
makespan at jclass 3 because the total amount of work-
loads increase as more long jobs are offered. On the other
hand, their average utilizations decrease, while the job fail-
ure rates sharply increase with more long jobs. The reason
for this is that a variable degree of job size distributions
makes the allocation schemes harder to achieve a fairly
balanced resource occupation. When IRP is dominantly
adopted by resources (pconfig 1), mGA-MJSP demonstrates
slightly better quality than minmin-MJSP in the three met-
rics. Also, mGA-MJSP in its entirety seems more robust
with an increase of the number of large jobs. In case of
pconfig 2, schedules produced by mGA-MJSP achieve the
shortest makespan and the highest average utilization
compared to other configurations of policy ratios. For
pconfig 3, the decreasing rate of the average utilization is
smaller than that shown in pconfig 2, while a job failure
rate is most stably maintained between 10.1% and 17.4%
in this scenario.

From the above discussion, the following conclusions
can be drawn. Although the performance of mGA-MJSP
regarding makespan is not always significantly better than
minmin-MJSP, its superiority in the maximization of
resource utilization as well as the minimization of job
failure rate is directly related to its high adaptability to
unpredictable deviations of resource capacity. This feature
makes mGA-MJSP much more attractive and effective in
the policy constrained DCS. We also found that provision-
ing of the bicriteria optimization based on the proposed
MJS scheme contributes to the adaptively guaranteed
SLMP STMP REP MJSP
0
2
4
6
8

10
12
14

R
es

ou
rc

e
Ef

fic
ie

nc
y

in
 0.1 ≤ E[η] < 0.3

0.3 ≤ E[η] < 0.5
0.5 ≤ E[η] ≤ 0.7

(b)Resource efficiency in utilization

U
til

iz
at

io
n

(%
)

oted by E½g� for J and R ranges from 0.1 and 0.7 for estimating resource
,000 jobs and 200 resources.

mGA−MJSP minmin−MJSP
0
1
2
3
4
5
6
7
8
9

10

x 105
M

ak
es

pa
n

(s
ec

)
jclass 1
jclass 2
jclass 3

(a) Makespan
mGA−MJSP minmin−MJSP

0
10
20
30
40
50
60
70
80
90

100

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

jclass 1
jclass 2
jclass 3

(b) Average utilization
mGA−MJSP minmin−MJSP

0
5

10
15
20
25
30
35
40

Jo
b

Fa
ilu

re
 R

at
e

(%
) jclass 1

jclass 2
jclass 3

(c) Job failure rate

mGA−MJSP minmin−MJSP
0
1
2
3
4
5
6
7
8
9

10

x 105

M
ak

es
pa

n
(s

ec
)

jclass 1
jclass 2
jclass 3

(d) Makespan

mGA−MJSP minmin−MJSP
0

10
20
30
40
50
60
70
80
90

100

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

jclass 1
jclass 2
jclass 3

(e)Average utilization

mGA−MJSP minmin−MJSP
0
5

10
15
20
25
30
35
40

Jo
b

Fa
ilu

re
 R

at
e

(%
) jclass 1

jclass 2
jclass 3

(f) Job failure rate

mGA−MJSP minmin−MJSP
0
1
2
3
4
5
6
7
8
9

10

x 105

M
ak

es
pa

n
(s

ec
)

jclass 1
jclass 2
jclass 3

(g) Makespan
mGA−MJSP minmin−MJSP

0
10
20
30
40
50
60
70
80
90

100

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

jclass 1
jclass 2
jclass 3

(h) Average utilization
mGA−MJSP minmin−MJSP

0
5

10
15
20
25
30
35
40

Jo
b

Fa
ilu

re
 R

at
e

(%
) jclass 1

jclass 2
jclass 3

(i) Job failure rate

Fig. 6. Scheduling adaptability under pconfig 1, pconfig 2, and pconfig 3. Each of the three policy configurations is related to results (a–c); (d–f); and (g–i),
respectively.

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 93
performance benefits in mGA-MJSP as compared to
minmin-MJSP.
6.5. Computation time verification

The results in computation times, which are obtained
by conducting a simulation with the mGA-based five poli-
cies under homogeneous policy constraints, are presented
in Fig. 7(a). Fig. 7(b) also plots the elapsed times of sim-
ulations for mGA-MJSP and minmin-MJSP under heteroge-
neous policy constraints, whose ratio for individual
resources are assumed to be randomly configured. In
Fig. 7(a), IRP most quickly reaches a solution, however,
the quality of the solution cannot be guaranteed as dis-
cussed. SLMP and REP can find a feasible solution at least
in a reasonable time; however, these policies are more sen-
sitive to the increase of job burstiness. Despite the strength
in makespan and efficiency of resource usage, STMP spends
the highest computational expense in most cases as a
result of the overheads imposed by job state tracking.
The competitiveness of MJSP is well maintained when
the job burstiness increases, as compared with other static
policies. This result means that efforts of adaptively
integrating policies with resources and jobs in mGA-MJSP
do not increase simulation elapsed times by very much.
Namely, this implication is essentially in agreement with
the properties of mGA-MJSP discussed in Section 5. As
shown in Fig. 7(b), the computational scalability of min-
min-MJSP seems to increase exponentially as the problem
size of MPDP grows because its dominant complexity is

approximately bounded by OððNFÞ2jPjMÞ 	 OðN2MÞ, if
N
 F or OðN4MÞ, if F P N. Although this result shows that
its increasing rate of minmin-MJSP is comparable with that
of mGA-MJSP for small problem sizes, mGA-MJSP requires
much less computation time than minmin-MJSP as N
increases steeply because it can reduce the feasible search
space by depending on its stochastic search operations.
This observed characteristic serves as convincing evidence
of describing how much more effective mGA-MJSP is in
searching optimal solutions than minmin-MJSP. This result
is consistent with the theoretical analysis given by
Theorem 1.

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

Number of Jobs

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
) IRP

SLMP
STMP
REP
MJSP

(a)Computation times of the mGA-
based four static policies and MJSP

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

Number of Jobs

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
) mGA−MJSP (P = 150)

mGA−MJSP (P = 200)
minmin−MJSP

(b)Computation times of the proposed
mGA-MJSP and minmin-MJSP

Fig. 7. Comparison of the computation time with different job burstiness.

94 Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95
7. Conclusions and future work

The problem with heterogeneous rescheduling policy
currently becomes a major barrier to restrict the large scale
resource pooling in a cooperative manner over ADs, which
employ static and proprietary administrative strategies for
mitigating harmful effects of resource failures. In this
paper, we have formulated the fault-tolerant job schedul-
ing problem with heterogeneous policies into MPDP on
the primary-backup fault tolerance model. To solve MPDP
effectively, we first adopted mGA’s stochastic operators,
then proposed a MJS scheme, which consists of two special
processes for solution representation and realization tai-
lored to MPDP. Our key contribution is proposing a mGA-
based MJS scheme, which not only confidently finds an
optimal scheduling solution with acceptable searching
complexity, but also guarantees reliable job executions
despite the availability perturbations of distributed
resources. We have summarized the major findings of this
study in three categories as follows:

(1) Despite the NP-completeness of MPDP, the pro-
posed mGA-based MJS scheme makes this combina-
torial optimization problem highly tractable in
terms of computational complexity, which is loga-
rithmic in the best case and quadratic in the worst
case with respect to N. As proved in Theorem 1, this
fact introduces the distinct possibility of effectively
finding near-optimal solutions compared to the
deterministic algorithms, e.g., minmin.

(2) The exclusive use of resources (C1) and precedence
constraints (C2) help to reduce search space. Also, it
turns out that penalizing solutions in proportion to
the degree of the deadline violation (C3) is effective
and well-directed in order to achieve more robust
solutions with respect to a job failure rate. In par-
ticular, the proposed solution realization process,
consisting of three functions, can estimate PETs
and evaluate the quality of solutions without con-
tributing to the increase of the overall time com-
plexity of mGA-based MJS scheme. As a result of
these features, the proposed scheme provides a
solution maximizing the benefit of selective use of
static rescheduling policies even for large problem
sizes of MPDP.

(3) Simulation results show the superiority of the
mGA-based MJS scheme compared with other static
rescheduling policies such as IRP, SLMP, STMP, and
REP in terms of three main metrics over DCS with
identical policies. Also, we have compared the
scheduling adaptability of the mGA-MJSP and min-
min-MJSP in the policy-constrained DCS. The mGA-
MJSP makes full use of each resource’s capacity
and highly improves the search efficiency compared
to minmin-MJSP in every category of policy
constraints.

Therefore, our approach will be especially useful when
allocating the sequential batch jobs to resources adopting
different types of rescheduling policies in the practical
DCS with various obstacles. To the best of our knowledge,
this is the first work on identifying the effects of adaptively
utilizing resources governed by heterogeneous scheduling
policies in the job scheduling model. Our ongoing work is
directed toward implementing the mGA-based MJS
scheme on a grid/cloud meta-scheduler and validating its
performance feasibility in real distributed computing.

Acknowledgment

This research was supported by the ETRI R&D program
of MSIP (Ministry of Science, ICT and Future Planning),
Korea [12-912-06-001, Development of the Security
Technology for MTM-based Mobile Devices and Next
Generation Wireless LAN].

References

[1] Jorge E. Pezoa, Sagar Dhakal, Majeed M. Hayat, Maximizing service
reliability in distributed computing systems with random node
failures: theory and implementation, IEEE Trans. Parallel Distrib.
Syst. 21 (10) (2010) 1531–1544.

[2] H. Li, D. Groep, L. Wolters, J. Templon, Job failure analysis and its
implications in a large-scale production grid, in: Proc. the 2nd IEEE
International Conference on e-Science and Grid Computing,
December 2006, pp. 1–8.

http://refhub.elsevier.com/S1389-1286(15)00078-X/h0005
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0005
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0005
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0005

Y.-H. Moon, C.-H. Youn / Computer Networks 82 (2015) 81–95 95
[3] Derrick Kondo, Bahman Javadi, Alexandru Iosup, Dick Epema, The
failure trace archive: enabling comparative analysis of failures in
diverse distributed systems, in: Proc. the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing
(CCGRID’10), pp. 398–407.

[4] Yulai Yuan, Yongwei Wu, Qiuping Wang, Guangwen Yang, Weimin
Zheng, Job failures in high performance computing systems: a large-
scale empirical study, Comput. Math. Appl. 63 (2012) 365–377.

[5] Jia-Chun Lin, Fang-Yie Leu, Ying-Ping Chen, Waqaas Munawar,
Impact of MapReduce task re-execution policy on job completion
reliability and job completion time, in: IEEE 28th International
Conference on Advanced Information Networking and Applications
(AINA’14), May 2014, pp. 712–718.

[6] Y. Zhang, H. Franke, J.E. Moreira, A. Sivasubramaniam, An integrated
approach to parallel scheduling using gang-scheduling, backfilling,
and migration, IEEE Trans. Parallel Distrib. Syst. 14 (3) (2003) 236–
247.

[7] Achim Streit, A self-tuning job scheduler family with dynamic policy
switching, in: Proc. the 8th International Workshop on Job
Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science (LNCS), Springer, 2002, pp. 1–23.

[8] R. Benjamin Clay, Zhiming Shen, Xiaosong Ma, Accelerating batch
analytics with residual resources from interactive clouds, in: IEEE
21st International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems
(MASCOTS’13), August 2013, pp. 414–423.

[9] Mohammad Reza Hoseiny Farahabady, Young Choon Lee, Albert Y.
Zomaya, Pareto-optimal cloud bursting, IEEE Trans. Parallel Distrib.
Syst. 25 (10) (2014) 2670–2682.

[10] Alexandru Iosup, Ozan Sonmez, Shanny Anoep, Dick Epema, The
performance of bags-of-tasks in large-scale distributed systems, in:
Proc. the 17th International Symposium on High Performance
Distributed Computing (HPDC’08), Boston, Massachusetts, USA,
June 23–27, 2008, pp. 97–108.

[11] Varun Gupta, Michelle Burroughs, Mor Harchol-Balter, Analysis of
scheduling policies under correlated job sizes, Perform. Eval. 67 (11)
(2010) 1–24 (November 2010, pp. 996–1013).

[12] D.E. Goldberg, B. Korb, K. Deb, Messy genetic algorithms: motivation,
analysis, and first results, Complex Syst. 3 (1989) 493–530.

[13] Tracy D. Braun, Howard Jay Siege, Noah Beck, Comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems, J. Parallel Distrib.
Comput. 61 (2001) 810–837.

[14] Hui Li, Realistic workload modeling and its performance impacts in
large-scale escience grids, IEEE Trans. Parallel Distrib. Syst. 21 (4)
(2010) 480–493.

[15] Tran Ngoc Minh, Thoai Nam, Dick H.J. Epema, Parallel workload
modeling with realistic characteristics, IEEE Trans. Parallel Distrib.
Syst. 25 (8) (2014) 2138–2148.

[16] Antonios Litke, Dimitrios Skoutas, Konstantinos Tserpes, Theodora
Varvarigou, Efficient task replication and management for adaptive
fault tolerance in mobile grid environments, Future Gener. Comput.
Syst. 23 (2) (2007) 163–178.

[17] Yong-Hyuk Moon, Chan-Hyun Youn, Integrated approach towards
aggressive state-tracking migration for maximizing performance
benefit in distributed computing, Cluster Comput. 16 (3) (2013)
367–378.

[18] Windows Azure, Microsoft Cloud Computing Platform. <http://
msdn.microsoft.com/en-us/library/hh680901(v=pandp.50).aspx>.
[19] J.S. Plank, H. Casanova, M. Beck, J.J. Dongarra, Deploying fault
tolerance and task migration with NetSolve, Future Gener. Comput.
Syst. 15 (5) (1999) 745–755.

[20] J. Basney, M. Litzkow, T. Tannenbaum, M. Livny, Checkpoint and
Migration of Unix Processes in the Condor Distributed Processing
System, Technical Report 1346, April 1997.

[21] W.M. Jones, Network-aware selective job checkpoint and migration
to enhance co-allocation in multi-cluster systems, Concurr. Comput.
Pract. Exp. 21 (2009) 1672–1691.

[22] Mohamed-Slim Bouguerra, Denis Trystram, Frédéric Wagner,
Complexity analysis of checkpoint scheduling with variable cost,
IEEE Trans. Comput. 62 (6) (2013) 1269–1275.

[23] Brent Rood, Michael J. Lewis, Grid resource availability prediction-
based scheduling and task replication, J. Grid Comput. 7 (4) (2009)
479–500.

[24] Guerraoui Rachid, André Schiper, Software-based replication for
fault tolerance, Computer 30 (4) (1997) 68–74.

[25] David E. Goldberg, Philip Segrest, Finite Markov chain analysis of
genetic algorithms, in: Proc. of the 2nd International Conference on
Genetic Algorithms on Genetic Algorithms and their Application, L.
Erlbaum Associates Inc., 1987, pp. 1–8.

[26] A Grid Simulation Toolkit for Resource Modelling and Application
Scheduling for Parallel and Distributed Computing. <http://www.
buyya.com/gridsim/>.

Yong-Hyuk Moon received the B.S. degree in
Computer Engineering from Dankook
University, Seoul, Korea in 2003. He also
received the M.S. and Ph.D. degrees in
Information and Communication Engineering
from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea in 2006
and 2013, respectively. Since 2006, he is with
the Software Research Laboratory in
Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Korea. His research
interests are in areas of resource allocation

algorithms for fault-tolerance in distributed computing networks, such as
peer-to-peer, cloud and grid.
Chan-Hyun Youn is a Professor with the
Department of Electrical Engineering and is a
Director of the Grid Middleware Center, Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea. He is also a Vice
President of Grid Forum Korea (OGF-KR). He
received his B.S. and M.S. degrees in
Electronics Engineering from Kyungpook
National University, Daegu, Korea, in 1981
and 1985, respectively. He also received a
Ph.D. in Electrical and Communications
Engineering from Tohoku University, Japan, in

1994. Before joining the University, he worked for Korea
Telecommunications (KT) as a Leader of High-Speed Networking Team.
He also was a Visiting Scholar at MIT, Cambridge, USA in 2004.

http://refhub.elsevier.com/S1389-1286(15)00078-X/h0020
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0020
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0020
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0030
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0030
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0030
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0030
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0035
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0035
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0035
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0035
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0035
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0045
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0045
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0045
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0055
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0055
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0055
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0060
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0060
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0065
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0065
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0065
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0065
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0070
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0070
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0070
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0075
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0075
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0075
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0080
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0080
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0080
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0080
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0085
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0085
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0085
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0085
http://msdn.microsoft.com/en-us/library/hh680901(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680901(v=pandp.50).aspx
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0095
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0095
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0095
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0105
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0105
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0105
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0110
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0110
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0110
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0115
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0115
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0115
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0120
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0120
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0125
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0125
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0125
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0125
http://refhub.elsevier.com/S1389-1286(15)00078-X/h0125
http://www.buyya.com/gridsim/
http://www.buyya.com/gridsim/

	Multihybrid job scheduling for fault-tolerant distributed computing in policy-constrained resource networks
	1 Introduction
	2 Fault-tolerant job scheduling model
	2.1 Application workload
	2.2 Resource failure
	2.3 Heterogeneous rescheduling policy

	3 Problem definitions
	3.1 Multihybrid policy decision problem
	3.2 Optimal schedule for MPDP

	4 The proposed job scheduling scheme for MPDP
	4.1 Solution representation process
	4.2 mGA-based MJS operations for solution reproduction
	4.3 Solution realization process
	4.3.1 decideSequence() under precedence constraints
	4.3.2 estimateProbExeTime() with different policies
	4.3.3 assessSchedQuality() for fitness comparison

	5 Analysis of the proposed job scheduling scheme
	6 Performance evaluation
	6.1 Simulation setup
	6.2 Comparison of scheduling quality
	6.3 Efficiency of resource usage
	6.4 Scheduling adaptability in the policy-constrained DCS
	6.5 Computation time verification

	7 Conclusions and future work
	Acknowledgment
	References

