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Abstract. Mobile devices are rapidly developing and the mobile applications 

are being complicated correspondingly. For seamless executions of the complex 

applications, the obstacles in mobile devices such as hardware and battery 

limitation should be overcomed. In this paper, we present effective 

compuatation offloading schemes via application partitioning and VM 

allocation in mobile cloud environment. For application partitioning, heuristics 

for offloading method decision in the mobile cloud (OMD-MC) are presented 

and it is operated energy-efficiently with low computational complexity. Also, 

VM allocation for the methods to be offloaded is also discussed for the cost 

reduction in mobile cloud. We first formulate an initial VM allocation to 

minimize the total computation and transmission cost in a cloud and describe 

how to improve it via method duplication. Evaluation results show that the 

OMD-MC is operated energy-efficiently compared with other two approaches 

and the method duplication is effective to reduce the total cost in the cloud. 
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1   Introduction 

With rapid development of mobile devices, mobile applications are being more 

complex. As the applications to be bigger, the mobile devices should be capable for 

seamless executions. However, current mobile devices have three obstacles to handle 

the complex applications: limitation of hardware and battery, mobility of mobile 

devices, and security problem [1]. 

Computation offloading is an effective solution to overcome the obstacles by 

moving computation to other machines which have more resource [2]. Especially, in 

mobile cloud environment, the offloading is operated from a mobile device to a cloud. 

One of the challenges in the offloading is deciding the portion of an application to be 

offloaded. Because some parts of the application are not beneficial if they are 

offloaded, and computation in a cloud and data transmission depends on the real-time 

node and network status respectively, the application should be partitioned effectively. 

To address the problem, many researches presented schemes for energy saving [3, 4, 

5, 6, 7] or performance improving [8, 9, 10] in the offloading [2]. The goals are to 



handle battery and hardware limitation issues in mobile devices respectively. Also, 

the both goals are not independent and achievements of each goal makes a positive 

effect to the other goal. In this paper, we present heuristics for offloading method 

decision in a mobile cloud (OMD-MC) to achieve effective application partitioning. 

For an application which has independent methods, the OMD-MC is operated using 

the direct acyclic graph representing execution flows (EF-DAG) of the application 

and it is designed to decide methods in the EF-DAG to be offloaded to the cloud 

energy-efficiently with low complexity.  

Because cloud computing essentially follows pay-as-you-go model, the cost 

reduction is an important issue in the computation offloading in mobile cloud 

environment, we also discuss VM allocation for the methods to be offloaded. In the 

VM allocation, an initial VM allocation problem is firstly formulated to achieve 

maximal cost-effectiveness using the direct acyclic graph representing execution 

flows in the cloud (CEF-DAG) and a scheme to improve the initial VM allocation via 

method duplication is also described. 

The remainder of this paper is organized as follows. Section 2 presents the EF-

DAG and OMD-MC for the application partitioning for computation offloading. 

Section 3 discuss VM allocation for the methods in the CEF-DAG, and present a 

formulation for initial VM allocation and its improvement. In section 4, we evaluate 

the OMD-MC and the VM allocation scheme. Finally section 5 concludes this paper. 

2   Application Partitioning for Computation Offloading 

2.1   EF-DAG 

We handle applications which are composed of independent methods. Fig. 1 shows an 

example of dependencies between the methods in the application. In the figure, two 

vertices each connected are regarded as the two methods having dependency and it 

means that the two methods affects each other during the overall execution of the 

application (e.g., if the result of one method becomes the input of the other method). 

To specify the dependency, we present EF-DAG which is the direct acyclic graph 

representing execution flows of the applications and Fig. 2 shows an example of the 

EF-DAG using the application in Fig. 1. In the EF-DAG, each vertex v V  

represents the method where V  is the set of the methods in the application. The 

weight of a vertex v represents the energy consumption for the computation of the 

vertex and is represented as  v . If the vertex v is used for several times during the 

overall execution, we denote it as the vertex 'v  for the second usage, the vertex ''v  

for the third usage, and so on. We note that the vertices colored in gray represent 

unoffloadable vertices. We denote the weight of an edge ije E  as  ije  and it 

represents the energy consumption for data transmission from vertex i to j where the 

E  is the set of the edges assuming that the vertex i is executed in the mobile device 

and the vertex j is executed in the cloud. 
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Fig. 1. An example of dependencies between the methods in the application 
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Fig. 2. The EF-DAG using the application using the application in Fig. 1. 

2.2   OMC-MC 

In this section, we present the OMD-MC to decide which vertices in the EF-DAG are 

to be offloaded to the cloud. The goal of the OMD-MC is to reduce energy 

consumption in the mobile device with guaranteeing the overall execution of the 

application finishes before the deadline similarly with Cuervo et al. [3]. Algorithm 1 

shows the OMD-MC and it consists of two steps: initial setting and vertex selection. 

 

Initial setting. In initial setting, unoffloadable methods are classified and the set 
mS  

is generated as {unoffloadable vertices}V  . 
,m compT  is initially defined as the sum 

of computation times of the unoffloadable vertices in the mobile device.  

 

Vertex selection. In vertex selection, the vertex 
*v  to execute in the mobile device 

in the set S  is decided. In this step, energy consumption changes (ECCs) for every 

vertex v S  in the mobile device are calculated first. Eq. (1) depicts the ECC when 

a vertex v S  as well as vertices in V S  is not offloaded.  
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(1) 

Then, the vertex *v  is decided to minimize the ECC with the deadline constraint 

given in Eq. (2) where *

,m comp

v
t  is the computation time of the vertex *v  in the 

mobile device, mCP  is the critical path of the EF-DAG, 
,c comp

vE t    is the expected 

completion time of the vertex v in the cloud, 
ij

tran

et  is the transmission time from the 

vertex i to j, and  ,u i j  is a variable whose value is 1 if there occurs transmission 

between the vertex i and j, and 0 otherwise.  

 *

, , ,

,

,
ij

m m

m comp m comp c comp tran

v ev
v CP S i j CP

T t E t t u i j deadline
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         (2) 

Finally, the vertex 
*v  is removed from the set S , and 

,m compT  is updated. The 

vertex selection is repeated until the set S  is empty and the deadline constraint is 

violated. 

 

Algorithm 1. OMD-MC 

1: 
, , , unoffloadable verticesm comp m comp

vv V
T t


   

2:  unoffloadable verticesS V   

3: while S   

4: for v S  

5: if  *

, , ,

,
,m m

ij

m comp m comp c comp tran

v ev v CP S i j CP
T t E t t u i j deadline

 
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6: break 

7: end if 

8: end for 

9: for v S  

10: 
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11: end for 

12: 

select 
*v  which minimizes    

0m

V S v S
ECC

 
   and 
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13: remove 
*v  from S  

14: *

, , ,m comp m comp m comp

v
T T t   

15: end while 



3   VM Allocation for Methods in CEF-DAG 

3.1   Formulation for the Initial VM Allocation 

As the result of the OMD-MC, the elements in the final set S are decided to be 

executed in the cloud. For VM allocation for those methods, we present CEF-DAG. 

The CEF-DAG is the same as the EF-DAG except that the vertices to be executed in 

the mobile device are excluded and the vertex set is the final set S. Therefore, we 

denote the corresponding edge set as 
cE . We note that edges from the set V S  to 

S or from the set S to V S  in the E  are remained in the 
cE . These edges are 

denoted as 0ve  or 0ve  for every vertex v S . The weight of a vertex v S  

represents the computation cost in VM type k, and it is denoted as   ,c v k v  where 

 k v  is the VM type in which the vertex v is allocated. Also, the weight of an edge 

c

ije E  represents the transmission cost from the vertex i to j, and it is denoted as 

 ijc e . 

We formulate an optimization problem for the initial VM allocation. The objective 

of the problem is to find   ,c v k v  and  ijc e  for every v S  and 
c

ije E  

respectively satisfying Eq. (3) whose objective function is the total cost in the cloud 

(
cTC ) with constraints of Eq. (4). Eq. (4) represents the deadline constraint where 

 
,

,

c comp

v k v
t  is completion time of the vertex v in VM type  k v  and 

cCP  is the critical 

path of the CEF-DAG.  
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3.2   Improvement of the Initial VM Allocation via Method Duplication 

In this section, we present a scheme to improve the initial VM allocation via method 

duplication. The basic idea of the scheme is that usage of new VMs to duplicate 

methods can be more cost-effective if the computation costs in the new VMs are less 

than the transmission costs between methods. The concept of method duplication can 

be applied for the dynamic case when there occurs performance variation in the cloud. 

The scheme is shown in Algorithm 2 (Line 2 ~ Line 8). After the initial VM 

allocation, jinterval  is firstly calculated for each vertex j S . The jinterval  of a 

vertex j denotes the time interval in which no method is allocated before the 



computation of the vertex j. For every jinterval , if there are vertex i S  satisfying 

that the computation time of the vertex i in the VM type  k j  is less than jinterval , 

and the transmission cost of ije  is greater than the computation cost of the vertex i in 

the VM type  k j , new VMs are created for the computation of the vertex i in the 

jinterval . 

Fig. 3(b) is an example of the improvement of the initial VM allocation as shown 

in Fig. 3(a). Because  
,

0, 1

c comp

k
t  is less than 1interval  and  01c e  is greater than 

  0, 1c k , the method 0 is duplicated in VM 1. Also, because  
,

1, 2

c comp

k
t  is less than 

4interval  and  14c e  is greater than   1, 2c k , the method 1 is duplicated in VM 

2. Therefore, new VMs are created for the computation of the method 0 and 1 before 

that of the method 1 and the method 4 respectively. 

 

Algorithm 2. VM allocation for methods of the CEF-DAG in the cloud 

1: initial allocation 

2: for ,jinterval j S   

3: for i S  

4: if       ,

,
, ,c comp c

j ij iji k j
t interval c e c i k j e E      

5: a new VM is created for the computation of the vertex i in the jinterval  

6: end if 

7: end for 

8: end for 
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Fig. 3. Improvement of the initial VM allocation via method duplication: (a) before the 

improvement. (b) after the improvement. 

4   Evaluation 

We evaluate the OMC-MC and the scheme for VM allocation in this section. For the 

evaluation, we consider the application which has the EF-DAG as shown in Fig. 4. In 



the figure, vertex and edge weights are presented, and the values in the brackets 

denotes the transmission time between two vertices. 

The OMC-MC is evaluated in two cases: with and without the deadline which is 46. 

In addition, we compare the OMC-MC with two other approaches: computing all 

vertices in the mobile device and computing all offloadable vertices in the cloud. The 

evaluation results of the OMC-MC are shown in Fig. 5. The energy consumption is 

the smallest using the OMC-MC without the deadline. With the deadline, the energy 

consumption increases and it means the transmissions between the mobile device and 

the cloud as well as the computations highly affect the execution time of the 

application. With the same reason, the result shows that the difference of the energy 

consumption between computing all vertices in the mobile device and all offloadable 

vertices in the cloud is relatively small.  
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Fig. 4. The EF-DAG for the evaluation. 

 

Fig. 5. Energy consumptions in the mobile device when all vertices being executed in the 

mobile devices, all offloadable vertices being executed in the cloud, and using the OMD-MC 

with and without the deadline. 

The CEF-DAG which is constructed as the result of the OMC-MC without 

deadline is depicted in Fig. 6. Using the CEF-DAG, we evaluate the VM allocation 

scheme. In the evaluation, we assume that VMs are homogeneous, and the 



computation and transmission cost are proportional to the computation and 

transmission time respectively. Therefore, the computation and the transmission time 

are supposed to be equal to the computation and the transmission cost as setting that 

the unit computation and the unit transmission cost are 1. The VM allocation scheme 

is evaluated in two cases: with and without the improvement via method duplication. 

The evaluation results of the VM allocation scheme are shown in Fig. 7. The total cost 

in the cloud with the improvement is less than that without the improvement. Also, if 

we use the applications which is highly parallelized and have large methods, the 

difference of total cost between the two cases is much larger. 
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Fig. 6. The CEF-DAG constructed as the result of the OMD-MC. 

 

Fig. 7. The total cost in the cloud with and without the improvement of the initial VM 

allocation via method duplication. 

5   Conclusion 

In this paper, we presented effective computation offloading schemes via application 

partitioning and VM allocation in mobile cloud environment. To overcome the 



obstacles in mobile devices, the OMD-MC is presented to reduce energy consumption 

in the mobile device with the deadline constraint and operated using the EF-DAG. In 

addition, the initial VM allocation for the methods in the CEF-DAG are formulated 

and the scheme for the improvement of it via method duplication is also discussed to 

achieve cost-effective VM allocation. The evaluation results showed that the energy 

consumption in the mobile device using the OMD-MC is smaller than other two 

approaches and the total cost in the cloud decreases after the improvement is applied. 

As on-going and future work, we are extending the OMD-MC to be applied in the 

dynamic environment by adaptively revising the application partitioning and 

developing heuristics for the initial VM allocation to reduce computational 

complexity. 
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