
Effective Computation Offloading Schemes via

Application Partitioning and VM Allocation in Mobile

Cloud Environment

Heejae Kim and Chan-Hyun Youn

Dept. of Electrical Engineering

Korea Advanced Institute of Science and Technology (KAIST), Korea
{kim881019,chyoun}@kaist.ac.kr

Abstract. Mobile devices are rapidly developing and the mobile applications

are being complicated correspondingly. For seamless executions of the complex

applications, the obstacles in mobile devices such as hardware and battery

limitation should be overcomed. In this paper, we present effective

compuatation offloading schemes via application partitioning and VM

allocation in mobile cloud environment. For application partitioning, heuristics

for offloading method decision in the mobile cloud (OMD-MC) are presented

and it is operated energy-efficiently with low computational complexity. Also,

VM allocation for the methods to be offloaded is also discussed for the cost

reduction in mobile cloud. We first formulate an initial VM allocation to

minimize the total computation and transmission cost in a cloud and describe

how to improve it via method duplication. Evaluation results show that the

OMD-MC is operated energy-efficiently compared with other two approaches

and the method duplication is effective to reduce the total cost in the cloud.

Keywords: Computation offloading, application partitioning, VM allocation.

1 Introduction

With rapid development of mobile devices, mobile applications are being more

complex. As the applications to be bigger, the mobile devices should be capable for

seamless executions. However, current mobile devices have three obstacles to handle

the complex applications: limitation of hardware and battery, mobility of mobile

devices, and security problem [1].

Computation offloading is an effective solution to overcome the obstacles by

moving computation to other machines which have more resource [2]. Especially, in

mobile cloud environment, the offloading is operated from a mobile device to a cloud.

One of the challenges in the offloading is deciding the portion of an application to be

offloaded. Because some parts of the application are not beneficial if they are

offloaded, and computation in a cloud and data transmission depends on the real-time

node and network status respectively, the application should be partitioned effectively.

To address the problem, many researches presented schemes for energy saving [3, 4,

5, 6, 7] or performance improving [8, 9, 10] in the offloading [2]. The goals are to

handle battery and hardware limitation issues in mobile devices respectively. Also,

the both goals are not independent and achievements of each goal makes a positive

effect to the other goal. In this paper, we present heuristics for offloading method

decision in a mobile cloud (OMD-MC) to achieve effective application partitioning.

For an application which has independent methods, the OMD-MC is operated using

the direct acyclic graph representing execution flows (EF-DAG) of the application

and it is designed to decide methods in the EF-DAG to be offloaded to the cloud

energy-efficiently with low complexity.

Because cloud computing essentially follows pay-as-you-go model, the cost

reduction is an important issue in the computation offloading in mobile cloud

environment, we also discuss VM allocation for the methods to be offloaded. In the

VM allocation, an initial VM allocation problem is firstly formulated to achieve

maximal cost-effectiveness using the direct acyclic graph representing execution

flows in the cloud (CEF-DAG) and a scheme to improve the initial VM allocation via

method duplication is also described.

The remainder of this paper is organized as follows. Section 2 presents the EF-

DAG and OMD-MC for the application partitioning for computation offloading.

Section 3 discuss VM allocation for the methods in the CEF-DAG, and present a

formulation for initial VM allocation and its improvement. In section 4, we evaluate

the OMD-MC and the VM allocation scheme. Finally section 5 concludes this paper.

2 Application Partitioning for Computation Offloading

2.1 EF-DAG

We handle applications which are composed of independent methods. Fig. 1 shows an

example of dependencies between the methods in the application. In the figure, two

vertices each connected are regarded as the two methods having dependency and it

means that the two methods affects each other during the overall execution of the

application (e.g., if the result of one method becomes the input of the other method).

To specify the dependency, we present EF-DAG which is the direct acyclic graph

representing execution flows of the applications and Fig. 2 shows an example of the

EF-DAG using the application in Fig. 1. In the EF-DAG, each vertex v V

represents the method where V is the set of the methods in the application. The

weight of a vertex v represents the energy consumption for the computation of the

vertex and is represented as  v . If the vertex v is used for several times during the

overall execution, we denote it as the vertex 'v for the second usage, the vertex ''v

for the third usage, and so on. We note that the vertices colored in gray represent

unoffloadable vertices. We denote the weight of an edge ije E as  ije and it

represents the energy consumption for data transmission from vertex i to j where the

E is the set of the edges assuming that the vertex i is executed in the mobile device

and the vertex j is executed in the cloud.

1

2 3 4

5 6

7

Fig. 1. An example of dependencies between the methods in the application

1

2

3

4

5 3’ 5’

6 7 1’

Fig. 2. The EF-DAG using the application using the application in Fig. 1.

2.2 OMC-MC

In this section, we present the OMD-MC to decide which vertices in the EF-DAG are

to be offloaded to the cloud. The goal of the OMD-MC is to reduce energy

consumption in the mobile device with guaranteeing the overall execution of the

application finishes before the deadline similarly with Cuervo et al. [3]. Algorithm 1

shows the OMD-MC and it consists of two steps: initial setting and vertex selection.

Initial setting. In initial setting, unoffloadable methods are classified and the set
mS

is generated as {unoffloadable vertices}V  .
,m compT is initially defined as the sum

of computation times of the unoffloadable vertices in the mobile device.

Vertex selection. In vertex selection, the vertex
*v to execute in the mobile device

in the set S is decided. In this step, energy consumption changes (ECCs) for every

vertex v S in the mobile device are calculated first. Eq. (1) depicts the ECC when

a vertex v S as well as vertices in V S is not offloaded.

              .m

vj iv vj ivV S v S
j S i S j V S i V S

ECC v e e e e    
 

     

   
        

   
   

(1)

Then, the vertex *v is decided to minimize the ECC with the deadline constraint

given in Eq. (2) where *

,m comp

v
t is the computation time of the vertex *v in the

mobile device, mCP is the critical path of the EF-DAG,
,c comp

vE t   is the expected

completion time of the vertex v in the cloud,
ij

tran

et is the transmission time from the

vertex i to j, and  ,u i j is a variable whose value is 1 if there occurs transmission

between the vertex i and j, and 0 otherwise.

 *

, , ,

,

,
ij

m m

m comp m comp c comp tran

v ev
v CP S i j CP

T t E t t u i j deadline
 

        (2)

Finally, the vertex
*v is removed from the set S , and

,m compT is updated. The

vertex selection is repeated until the set S is empty and the deadline constraint is

violated.

Algorithm 1. OMD-MC

1:
, , , unoffloadable verticesm comp m comp

vv V
T t


 

2:  unoffloadable verticesS V 

3: while S 

4: for v S

5: if  *

, , ,

,
,m m

ij

m comp m comp c comp tran

v ev v CP S i j CP
T t E t t u i j deadline

 
       

6: break

7: end if

8: end for

9: for v S

10:
          

    .

m

vj ivV S v S j S i S

vj ivj V S i V S

ECC v e e

e e

  

 

   

   

   

 

 

 

11: end for

12:

select
*v which minimizes    

0m

V S v S
ECC

 
  and

 *

, , ,

,
,m m

ij

m comp m comp c comp tran

v ev v CP S i j CP
T t E t t u i j deadline

 
       

13: remove
*v from S

14: *

, , ,m comp m comp m comp

v
T T t 

15: end while

3 VM Allocation for Methods in CEF-DAG

3.1 Formulation for the Initial VM Allocation

As the result of the OMD-MC, the elements in the final set S are decided to be

executed in the cloud. For VM allocation for those methods, we present CEF-DAG.

The CEF-DAG is the same as the EF-DAG except that the vertices to be executed in

the mobile device are excluded and the vertex set is the final set S. Therefore, we

denote the corresponding edge set as
cE . We note that edges from the set V S to

S or from the set S to V S in the E are remained in the
cE . These edges are

denoted as 0ve or 0ve for every vertex v S . The weight of a vertex v S

represents the computation cost in VM type k, and it is denoted as   ,c v k v where

 k v is the VM type in which the vertex v is allocated. Also, the weight of an edge

c

ije E represents the transmission cost from the vertex i to j, and it is denoted as

 ijc e .

We formulate an optimization problem for the initial VM allocation. The objective

of the problem is to find   ,c v k v and  ijc e for every v S and
c

ije E

respectively satisfying Eq. (3) whose objective function is the total cost in the cloud

(
cTC) with constraints of Eq. (4). Eq. (4) represents the deadline constraint where

 
,

,

c comp

v k v
t is completion time of the vertex v in VM type  k v and

cCP is the critical

path of the CEF-DAG.

    minimize ,
c c

c

ij

v V e E

TC c v k v c e
 

   (3)

 
,

,

,

subject to
ij

c c

c comp tran

ev k t

v CP i j CP

t t deadline
 

   (4)

3.2 Improvement of the Initial VM Allocation via Method Duplication

In this section, we present a scheme to improve the initial VM allocation via method

duplication. The basic idea of the scheme is that usage of new VMs to duplicate

methods can be more cost-effective if the computation costs in the new VMs are less

than the transmission costs between methods. The concept of method duplication can

be applied for the dynamic case when there occurs performance variation in the cloud.

The scheme is shown in Algorithm 2 (Line 2 ~ Line 8). After the initial VM

allocation, jinterval is firstly calculated for each vertex j S . The jinterval of a

vertex j denotes the time interval in which no method is allocated before the

computation of the vertex j. For every jinterval , if there are vertex i S satisfying

that the computation time of the vertex i in the VM type  k j is less than jinterval ,

and the transmission cost of ije is greater than the computation cost of the vertex i in

the VM type  k j , new VMs are created for the computation of the vertex i in the

jinterval .

Fig. 3(b) is an example of the improvement of the initial VM allocation as shown

in Fig. 3(a). Because  
,

0, 1

c comp

k
t is less than 1interval and  01c e is greater than

  0, 1c k , the method 0 is duplicated in VM 1. Also, because  
,

1, 2

c comp

k
t is less than

4interval and  14c e is greater than   1, 2c k , the method 1 is duplicated in VM

2. Therefore, new VMs are created for the computation of the method 0 and 1 before

that of the method 1 and the method 4 respectively.

Algorithm 2. VM allocation for methods of the CEF-DAG in the cloud

1: initial allocation

2: for ,jinterval j S 

3: for i S

4: if       ,

,
, ,c comp c

j ij iji k j
t interval c e c i k j e E    

5: a new VM is created for the computation of the vertex i in the jinterval

6: end if

7: end for

8: end for

the mobile device

VM 1 (VM type 1)

VM 2 (VM type 2)

VM 3 (VM type 3)

method 0

method 1 method 3

method 2 method 4

method 5

t

t

t

t

1interval

4interval

(a)

the mobile device

VM 1 (VM type 1)

VM 2 (VM type 2)

VM 3 (VM type 3)

method 0

method 1 method 3

method 2 method 4

method 5

t

t

t

t

method 0

method 1

(b)

Fig. 3. Improvement of the initial VM allocation via method duplication: (a) before the

improvement. (b) after the improvement.

4 Evaluation

We evaluate the OMC-MC and the scheme for VM allocation in this section. For the

evaluation, we consider the application which has the EF-DAG as shown in Fig. 4. In

the figure, vertex and edge weights are presented, and the values in the brackets

denotes the transmission time between two vertices.

The OMC-MC is evaluated in two cases: with and without the deadline which is 46.

In addition, we compare the OMC-MC with two other approaches: computing all

vertices in the mobile device and computing all offloadable vertices in the cloud. The

evaluation results of the OMC-MC are shown in Fig. 5. The energy consumption is

the smallest using the OMC-MC without the deadline. With the deadline, the energy

consumption increases and it means the transmissions between the mobile device and

the cloud as well as the computations highly affect the execution time of the

application. With the same reason, the result shows that the difference of the energy

consumption between computing all vertices in the mobile device and all offloadable

vertices in the cloud is relatively small.

1

2

3

4

5 3’ 5’

6 7 1’

5(7)

6(6)

4(5)

4(6)

4(1)
5(5)

4(3)

5(4)

4(7) 5(3)

6(7)

5(5) 7(8)

5

7

3

6

10 3 10

2 5 5

Fig. 4. The EF-DAG for the evaluation.

Fig. 5. Energy consumptions in the mobile device when all vertices being executed in the

mobile devices, all offloadable vertices being executed in the cloud, and using the OMD-MC

with and without the deadline.

The CEF-DAG which is constructed as the result of the OMC-MC without

deadline is depicted in Fig. 6. Using the CEF-DAG, we evaluate the VM allocation

scheme. In the evaluation, we assume that VMs are homogeneous, and the

computation and transmission cost are proportional to the computation and

transmission time respectively. Therefore, the computation and the transmission time

are supposed to be equal to the computation and the transmission cost as setting that

the unit computation and the unit transmission cost are 1. The VM allocation scheme

is evaluated in two cases: with and without the improvement via method duplication.

The evaluation results of the VM allocation scheme are shown in Fig. 7. The total cost

in the cloud with the improvement is less than that without the improvement. Also, if

we use the applications which is highly parallelized and have large methods, the

difference of total cost between the two cases is much larger.

2

3

4

5 3’ 5’

1’

7

6

5

4

3

1
5

6

7 3

7

8

7

2

5

8 2 8

3

Fig. 6. The CEF-DAG constructed as the result of the OMD-MC.

Fig. 7. The total cost in the cloud with and without the improvement of the initial VM

allocation via method duplication.

5 Conclusion

In this paper, we presented effective computation offloading schemes via application

partitioning and VM allocation in mobile cloud environment. To overcome the

obstacles in mobile devices, the OMD-MC is presented to reduce energy consumption

in the mobile device with the deadline constraint and operated using the EF-DAG. In

addition, the initial VM allocation for the methods in the CEF-DAG are formulated

and the scheme for the improvement of it via method duplication is also discussed to

achieve cost-effective VM allocation. The evaluation results showed that the energy

consumption in the mobile device using the OMD-MC is smaller than other two

approaches and the total cost in the cloud decreases after the improvement is applied.

As on-going and future work, we are extending the OMD-MC to be applied in the

dynamic environment by adaptively revising the application partitioning and

developing heuristics for the initial VM allocation to reduce computational

complexity.

Acknowledgments. This research was supported by the MSIP (Ministry of Science,

ICT & Future Planning), Korea in the ICT R&D Program 2014, and the MSIP under

the ITRC (Information Technology Research Center) support program (NIPA-

2014(H0301-14-1020)) supervised by the NIPA (National IT Industry Promotion

Agency).

References

1. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: 15th Annual ACM

Symposium on Principles of Distributed Computing, pp. 1--7 (1996)

2. Kumar, K., Liu, J., Lu, Y. -H., Bhargava, B.: A Survey of Computation Offloading for

Mobile Systems. In: Mobile Network and Applications, vol. 18, no. 1, pp. 129--140 (2013)

3. Cuervo, E., Balasubramanian, A., Cho, D. -K., Wolman, A., Saroiu, S., Chandra, R., Bahl,

P.: MAUI: Making Smartphones Last Longer with Code Offload. In: 8th International

Conference on Mobile Systems, Applications, and Services, pp. 49--62 (2010)

4. Kumar, K., Lu, Y. -H: Cloud Computing for Mobile Users: Can Offloading Computation

Save Energy?. In: IEEE Computer, vol. 43, no. 4, pp. 51--56 (2010)

5. Ge, Y., Zhang, Y., Qiu, Q., Lu, Y. -H.: A Game Theoretic Resource Allocation for Overall

Energy Minimization in Mobile Cloud Computing System. In: 18th ACM/IEEE

International Symposium on Low Power Electronics and Design, pp. 279--284 (2012)

6. Wen, Y., Zhang, W., Luo, H.: Energy-optimal Mobile Application Execution: Taming

Resource-poor Mobile Devices with Cloud Clones. In: 31st Auunal IEEE International

Conference on Computer Communications, pp. 2716--2720 (2012)

7. Huang, D., Wang, P., Niyato, D.: A Dynamic Offloading Algorithm for Mobile Computing.

In: IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 1991--1995 (2012)

8. Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D.: Adaptive Offloading for

Pervasive Computing. In: IEEE Pervasive Computing, vol. 3, no. 3, pp. 66--73 (2004)

9. Chu, H. H., Song, H., Wong, C., Kurakake, S., Katagiri. M.: Roam, a Seamless Application

Framework. In: Journal of Systems and Software, vol. 69, no. 3, pp. 209--226 (2004)

10. Ou, S., Yang, K., Liotta, A.: An Adaptive Multi-constraint Partitioning Algorithm for

Offloading in Pervasive Systems. In: 4th Annual IEEE International Conference on

Pervasive Computing and Communications, pp. 116--125 (2006)

