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Abstract. In the science area, workflow management systems are used for the 
purpose of managing collaborative researches of many organizations. While 
executing a workflow application, a workflow management system should decide 
the resource to assign each task and the order to execute the assigned tasks. The 
processing cost and the completion time can be very different depending on that 
schedule. Furthermore, users can ask for low processing cost or short completion 
time. However, satisfying those two requests at the same time is very difficult. 
Therefore, the existing workflow scheduling schemes try to find the optimal 
solution while setting bounds to one condition. These schemes can find some 
schedules that satisfy their own purposes. However, they cannot get the schedules 
satisfying various SLAs that vary depending on users, workflow applications, 
and so on. In this paper, we propose the adaptive workflow scheduling scheme 
based on the colored Petri-Net model which offers two selective workflow 
scheduling policies. The proposed scheme separates the scheduling phase and the 
execution phase, and distributes the actual remaining time in the execution phase 
as well as in the ratio of the processing time processing cost which is being 
decided for the scheduling phase.  
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1   Introduction 

Workflow is a means of representing the whole processes of a job and the 
information paths among its sub-tasks [1]. It is used in the business field at first to 
define and analyze one’s working procedures. Nowadays, not only in the business field, 
but also in many computer programs which have long or complicated procedures and 
in computing services which consist of many programs used in each step is workflow 
used. Scientific applications such as Next Generation Sequencing (NGS) application 
[2] and Drug Screening application are good example. In order to execute these 
workflow applications, users need to get assigned to some computing resources and 
dispatch each program to them. All of these kinds of management functions are 
performed by workflow management systems. In addition to this, as the cloud 
computing services being introduced, many researches on enhancing the economic 
feasibility or the efficiency of workflow management systems are done. Based on the 

 
                                                           



virtualization technology, a cloud computing service provider collects the computing 
resources in its resource pool, divides the collected resources into the virtual resources 
whose sizes (number of CPU cores, volume of storage, size of memory) are set as each 
user wants to have. In addition, the users will be charged for the cloud computing 
service as much as they used. Therefore, cloud computing can give the service 
providers the advantage of efficient utilization of their resources and the users the 
advantage of lowering cost.  

While executing a workflow application, a workflow management system should 
decide the resource to assign each task and the order to execute the assigned tasks. 
Therefore, workflow scheduling problem plays a key role in WfMS. The processing 
cost and the completion time can be very different depending on that schedule. 
Furthermore, users can ask for low processing cost or short completion time, but 
satisfying those two requirements at the same time is practically impossible. Therefore, 
the existing workflow scheduling schemes try to find the optimal solution while setting 
bounds to one condition but they cannot get the schedules satisfying all the various 
SLAs that vary depending on users, workflow applications, and so on. Workflow 
scheduling schemes can be divided into three types by their characteristics of 
scheduling behaviors [3]. Static scheduling schemes schedule all the tasks of a 
workflow instance for once as soon as the instance is initialized. However, it cannot 
cope with sudden changes of the tasks or resources so it is not practical. Dynamic 
scheduling schemes schedule each task of a workflow instance right before the 
execution. However, the solutions may not be optimal since it do not considers the 
whole tasks. Also, there may be some overheads while deciding the resource right 
before execution. Phased scheduling schemes divide the workflow scheduling job and 
executing job into some phases so that the scheduler schedules and executes the tasks 
in the same phase in the same way of static scheduling schemes, and after finishing the 
tasks in a single phase, the scheduler schedules and executes the tasks in the next phase. 
Therefore, phased scheduling schemes can be considered as the balanced way between 
the dynamic scheduling and the static scheduling. Therefore, we adopted the phased 
scheduling model. 

In this paper, we propose the phased workflow scheduling scheme based on the 
colored Petri-Net model which guarantees the given deadline in a cheap way. Users 
may choose the policy to utilize. In section 2, we introduce our workflow management 
system model. We will introduce our scheme in section 3. Then, we will show our 
experimental result in section 4.  

2   Workflow Model 

Workflow management system (WfMS) schedules and executes user requested 
workflow within some constraints such as budget or deadline. Fig 1 shows the 
architecture and functionalities supported by various components of the workflow 
management model [4]. At the highest level, users interact with workflow management 
system by tools such as a workflow designer. They send chemical requests and receives 
the chemical process result via chemical service layer. User requirements such as 
deadline or budget are also sent in a service level agreement (SLA) form. In a workflow 



management layer, it schedules each tasks to proper resources. Resource management 
layer creates, manages, and terminates the cloud resource. These two layers play an 
important role in efficient execution of user requests.  

 
Figure 1 Reference architecture of cloud workflow management system [4] 

For each VM type, CSP offers VM specification and its cost information to the 
WfMS. VM specification means the each VM type’s cpu, ram, and storage information. 
We denote the cpu, ram, and storage of the VM type v be cpu(v), ram(v), and storage(v). 
Also, we denote the expected execution time of the task T on VM type v be ETv(𝑇𝑇). 
We assumed that we pay for leasing VMs in a pay-as-you-go model.  

The user request consists of workflow topology W and the service level agreement 
SLA. We used colored Petri-net model in order to represent the workflow topology W. 
A Petri-net is one of the mathematical tools for representing workflow topologies. A 
Petri-Net is defined as a 4-tuple 𝑃𝑃𝑃𝑃 = (𝑃𝑃,𝑇𝑇,𝐴𝐴,𝑀𝑀0), where 𝑃𝑃 is a finite set of places, 
𝑇𝑇 is a finite set of transitions, 𝐴𝐴 is a finite set of arcs, and 𝑀𝑀0 is an initial marking of 
tokens [5]. We call the Petri-net model colored Petri-net when the tokens are classified 
by “colors”. In our work, we separated the token by two colors: scheduling token and 
execution token. Scheduling token first scans the entire workflow topology and 
determines the value that helps scheduling. Execution token maps the task onto the VM 
and monitors the process. Initially, scheduling token is located at the last task of the 
workflow and execution token is located at the first task of the workflow. 

We assume that each places contain remaining execution time information ret. The 
remaining execution time of the place p (ret(p)) is the expected execution time to finish 
execution of the rest of the workflow from p. Since we do not know the execution time, 
we used average execution time for all VM types to calculate ret. Also, we assume that 
each transitions contain expected proportion of the task prop. The expected proportion 
of the task t (prop(t)) is the importance of the current task’s expected execution time 
compared to the expected execution time of the entire workflow. These two values are 



determined by scheduling token and will be used in scheduling process. Also, we 
assume each tokens have information of remaining time in order to map each tasks onto 
proper resources.   

3   Proposed Phased Adaptive Workflow Scheduling Scheme 

Our scheme adopted phased scheduling model, which improves the weak point of 
static scheduling and dynamic scheduling. There are two phases in our scheme: 
scheduling phase and execution phase. The purpose of the scheduling phase in our 
scheduling scheme is to find the expected proportion of the time consumption of each 
task to the time consumption of all the tasks waiting to be processed. In the execution 
phase, the proposed scheduling scheme decides the amount of computing resources to 
be assigned to a task as the proportion calculated before in the scheduling phase, so that 
it can make a workflow task schedule that reflects the actual margin of the given 
constraint. 

3.1   Scheduling Phase 

When a user sends workflow request to WfMS, WfMS first puts two tokens: one 
scheduling token at the end place, and one execution token at the entry place. In 
scheduling phase, the scheduling token recursively scans backward to the entry task 
and determines ret(p) of each places and prop(t) of each transitions. 

The scheduling token moves backward to a new place and we can determine ret and 
prop value while moving step by step until it arrives the start point of the workflow. 
Traditional Petri-net model do not describes the behavior of token moving backward. 
However, in our work, we assumed that token may move backward in the opposite way 
to the token firing to forward. Fig 2 shows the movement of tokens in traditional Petri-
net model. In traditional Petri-net model, when token fires, current token at the place 
disappears and a token is created at the places that come after. This process is shown in 
Fig 2(a) and Fig 2(b). Token fires when a firing condition is satisfied: when there 
appears an AND-join pattern, tokens should wait until each places which are located 
before to the place that all branch joins have one token as in Fig 2(c) and Fig 2(d). In 
our model, scheduling token moves backward in a same way. We can easily see Fig 2 
in an opposite way. When an AND-join pattern appears as in Fig 2(d), current token 
disappears and all places that tokens are generated at the places that come before in Fig 
2(c). Also, when an AND-split pattern is appeared, we should wait until first place of 
each branch has token. 



 
Figure 2 Example of token firing process in traditional Petri-net model 

 Initially, the scheduling token locates at the last place of the workflow and the 
remaining execution time of the last place is definitely zero since there is no transitions 
(tasks) left. Let place where scheduling token exists be p and the next transition and the 
next place be 𝑝𝑝∗ and 𝑝𝑝∗∗. Then, the remaining execution time of the place p can be 
determined in a recursive way by equation (1). 

𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) = �𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝∗∗) +
1
𝑘𝑘

� 𝐸𝐸𝑇𝑇𝑣𝑣(𝑝𝑝∗)
𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣

  𝑖𝑖𝑖𝑖 𝑝𝑝∗∗ 𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒             

0                                                      𝑖𝑖𝑖𝑖 𝑝𝑝∗∗ 𝑑𝑑𝑑𝑑 𝑛𝑛𝑑𝑑𝑟𝑟 𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟

 (1) 

We do know exactly know the execution time since VM types are not scheduled yet. 
Therefore, we used the average execution time of 𝑝𝑝∗  for all VM types. Also, the 
expected proportion of the task that comes after the place p can be determined by eq.(2). 
prop(t) is the ratio of the execution of the task to the remaining execution time so it can 
be simply obtained by the expected execution time of the task divided by the ret of p.  
 

𝑝𝑝𝑟𝑟𝑑𝑑𝑝𝑝(p∗) =
1
𝑘𝑘 ∑ 𝐸𝐸𝑇𝑇𝑣𝑣(𝑝𝑝∗)𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣

𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝)
 (2) 

When a scheduling token arrives at the entry task, it means that ret and prop of all 
places and transitions are determined. Then, the scheduling phase ends and moves to 
the execution phase.  

3.2   Execution Phase 

In execution phase, execution token moves forward from entry node to end node, 
dynamically scheduling and executing tasks. Token firing condition is the same as the 
traditional Petri-net model but it moves after the next transition (task) is completed. Our 



scheme tries to schedule tasks in the cheapest way while guaranteeing the given 
deadline. The basic idea of our scheduling scheme is to allocate the deadline of a task 
considering the importance of the task. When a certain task needs high computing 
resources compared to other task, we map the task to a high computing resource. 
Proportion of a task prop(t) shows the importance of the task compared to the rest. 
Therefore, we consider prop(t) and allocate the portion of resources in order to ensure 
deadline. 

Each execution tokens accompany the remaining deadline information. We denote 
the remaining deadline of execution token at place p be p.rd. For example, when 
execution token is located at the entry place 𝑝𝑝𝑡𝑡, we can easily know that 𝑝𝑝𝑡𝑡 . 𝑟𝑟𝑑𝑑 is the 
total deadline of the workflow request. To schedule the next task, we defined sub-
deadline concept. sub-deadline is the deadline of the task t and it can be obtained by 
simply multiplying the remaining time and the prop value of p as depicted in equation 
(3). 

𝑑𝑑𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑛𝑛𝑟𝑟(𝑝𝑝∗) = 𝑝𝑝. 𝑟𝑟𝑑𝑑 × 𝑝𝑝𝑟𝑟𝑑𝑑𝑝𝑝(𝑝𝑝∗) (3) 

We assumed that the WfMS have information of expected execution time of tasks 
on every VM types. The aim of deadline policy is to guarantee the deadline while trying 
to use resource in a cheap way. Therefore, we can finish scheduling by finding the 
cheapest VM type which assures the sub-deadline. Token stays until the execution of 
𝑝𝑝∗ is completed and the next place is ready to be started. When triggered, it fires to the 
next places while the remaining time value is decreased by actual execution time of 𝑝𝑝∗. 
Algorithm 1 summarizes the entire process of scheduling phase and execution phase.  

 
Algorithm 1. Phased scheduling scheme 
Input: W: workflow topology in a Petri-net form, SLA: deadline constraint 
Output: execution result 
※ Scheduling phase 
while true do 
    Let 𝐒𝐒𝐒𝐒 = {P1, P2, … , Pn} be places which has scheduling tokens in current 
    if SP has only one element at entry node then 
        end scheduling phase 
    end if 
    for p = each element in SP do 
        determine 𝑝𝑝𝑟𝑟𝑑𝑑𝑝𝑝(𝑝𝑝∗) and 𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) by eq.(1) and eq.(2) 
        if all members of (∗∗𝑝𝑝)∗∗ have scheduling token then 
            delete p in SP 
            add (∗∗𝑝𝑝) in SP 
        end if 
    end for 
end while 
※ Execution phase  
while true do 
    Let 𝐄𝐄𝐒𝐒 = {P1, P2, … , Pn} be places which has execution tokens in current 

if EP has only one element at entry node then 
        end execution phase 



    end if 
    for p = each element in EP do 
        if 𝑝𝑝∗ is schedulable (each  ∗(𝑝𝑝∗) have one execution token) then 
            deadline = p. rt × prop(p∗) 
            Let V be the cheapest VM type to execute p∗ within the deadline 
            Execute p∗ at V 
            p∗. 𝑟𝑟𝑟𝑟 = 𝑝𝑝. 𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑎𝑎𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑 𝑟𝑟𝑒𝑒𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖𝑑𝑑𝑛𝑛 𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟 𝑑𝑑𝑖𝑖 𝑝𝑝∗ 

end if 
    end for 
end while 

 

4   Experiments and Evaluation 

4.1   Experiment Environment 

The experimental environment consists of workflow designer, workflow broker, and 
OpenStack Cloud as shown in Fig. 3. We defined three workflow applications using 
workflow designer, and requested execution of one workflow within a certain deadline. 
The task request including the SLA information was sent to the workflow broker, and 
then a workflow broker did utilize the deadline information and allocated each sub-task 
within the sub-deadline. The workflow management system used in the experiment was 
implemented for OpenStack cloud so that it managed VMs under OpenStack 
environment to run each sub-task.  

 
Figure 3 Experimental environment 

Three examples of workflow applications are shown in Fig. 4. Workflow type 1 (Fig. 
4(a), and (b)) has some sequentially connected split-merge pairs that have some parallel 
tasks. Workflow type 2 (Fig. 4(c), and (d)) has only two split-merge pairs. However, 
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or Budget
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Workflow Scheduler
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Deadline Policy Budget Policy

OpenStack
Cloud



they have lots of parallel tasks. Workflow type 3 (Fig. 4(e), and (f)) are composed of 
hybrid structures of workflow type 1 and the type 2, because its outer split-merge pair 
has many parallel tasks, as well as its inner split-merge pairs are connected sequentially 
and show characteristics in some parallel tasks. We used task type 1 and type 2 in 
distribution. The shaded area of Fig 4(b), (d), and (f) are task type 2 and rest of others 
used task type 1. Workflow type 1 is appeared in Mao’s work[6] and workflow type 2 
and workflow type 3 are show in Jia Yu’s work[7] in experiments. Topologies used 
here are exactly same as the ones used in previous works’ experiment. However, tasks 
are different from them.  

 
Figure 4 Three types of workflow topology used in experiment 

4.2   Experimental Results 

We requested the execution of each workflow applications repeatedly with various 
SLAs (deadlines), and investigated the actual execution time and cost. Additionally, we 
calculated the difference between the given SLA and the actual execution time or cost 
to see how well each policy guaranteed the given SLA. Therefore, we should check 
whether the proposed scheme work properly so that the actual execution time follows 
the given deadline. Whether the proposed scheme yield the optimal schedule can be 
verified by comparison with other scheduling policies and other scheduling schemes, 
but it is not covered in this paper. 

Fig 5 shows the experimental results according to the deadline policy used in the 
proposed scheme. Fig 5(a). (c), and (e) represents the actual execution time with 
different workflow types versus increment of deadline. Bold lines in Fig 5(a), (c), and 
(e) represents the actual processing time of each workflow. The gray lines stands for 
the differences in QoS information of the applications. We can find that three graphs 
show the similar result. When the deadline is too low, the deadline policy cannot meet 
the deadline although the broker allocates whole computing resource with large VM 
types. Therefore, there are some QoS differences in low deadline requirement. However, 
when the deadline is given adequately, the broker can schedule for adequate VM types 
namely, the deadline policy assures the requirement. Results show that the deadline is 
always guaranteed. In advance, Fig 5(b), (d), and (f) shows the execution costs of 

(a) wf1 topology (b) Sample workflow wf1

(c) wf2 topology (d) Sample workflow wf2

(e) wf3 topology (f) Sample workflow wf3



different workflow types when we change the deadline. All graphs are monotone 
decreasing. When the deadline is small, larger type flavor are used more frequently in 
order to meet deadline and the execution cost tends to be more expensive. In the same 
manner, the execution cost tends to be cheaper when the deadline is large. Therefore, 
we can conclude that the deadline policy schedules workflow with guaranteeing the 
deadline, while trying to use minimum resources. We checked this policy works well 
in various types of workflow.  

 
Figure 5 Experimental result 

 

5   Conclusion 

We propose the adaptive workflow scheduling scheme based on the colored Petri-
Net model which tries to schedule in the cheapest way while assuring the deadline user 
given. Our model uses the phased scheduling model so that it can schedule dynamically 
with low complexity and close to optimal. Also, we showed that our result ensures the 
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deadline. Our work was to distribute sub-deadline to each tasks based on its importance 
compared to the rest of the workflow. We can extend this idea to distribute budgets to 
each tasks based on the same importance and make user to choose the policy they want. 
Further work will contain these extensions. Also, we can generalize the problem by 
using the utilization concept consisting of deadline and budget.  
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