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Abstract In this paper, to guarantee Service Level Agree-
ment composed of the deadline and budget given by users
for workflow application services in mobile cloud, we
propose the two-phases algorithm with a cost adaptive
VM management. Firstly, the greedy based workflow co-
scheduling phase schedules a workflow by using a resource
consolidation in a parallel manner to decrease a cost with the
deadline assurance. Secondly, the resource profiling based
placement phase locates a VM to a certain physical host in
the multi-cloud using the profile on the property of clouds in
order to comply with the budget while maximizing the ser-
vice quality. We implement mobile cloud brokering system
with the two-phases algorithm and demonstrate that our pro-
posed system outperforms traditional cloud systems through
several experimental results.
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1 Introduction

There have been many attempts to apply cloud comput-
ing to a mobile environment for various mobile services
called as mobile cloud computing [1]. The main issue of
these attempts is to build a middleware system to provide
specific services using cloud resources to mobile users. In
this system, the mobile service users can receive the ser-
vice results on Virtual Machine (VM) instance through the
middleware system in cloud. There are several works for
this system to provide various application services such as
mobile business, mobile commerce, mobile learning and
mobile healthcare [2–5]. The one of main concerns in the
mobile cloud service is the workflow application service
which has data collection, transportation and processing
such as the big data application service [6]. The several
researches have been proposed to provide the workflow
application service to users in mobile cloud [7, 8]. With
these solutions, scientists can easily access to scientific
workflow application services such as the generation of
science-grade mosaics of the sky in astronomy and the
underpinnings of complex diseases in bioinformatics, in
cloud through a mobile devices and increase the efficiency
of their researches [9, 10]. The workflow processing in
cloud through mobile devices requires two main procedures
in this wise, the workflow scheduling and the VM place-
ment. The most important objective of those procedures is
an assurance of Service Level Agreement (SLA) composed
of the deadline and budget given by mobile service users
[11]. However, the studies above mentioned [7, 8] only con-
sider the mobile cloud framework and its functionalities for
workflow application services, not the workflow process-
ing. Therefore, the mobile cloud system which has the VM
management module for workflow processing is required to
assure the users SLA. To do this, there are several related
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works to guarantee the users SLA based on the heuristic
approach for workflow scheduling and VM placement in the
conventional heterogeneous environment without mobile
device for reference. Firstly, for workflow scheduling, a
famous heuristic algorithm called Heterogeneous Earliest-
Finish-Time (HEFT) is introduced for deadline assurance
[12]. In this algorithm, the rank value is allocated to each
task of the workflow to schedule them based on their prior-
ity. In [13, 14], an iterative resource rescheduling algorithm
by using GAIN/LOSS weight is introduced to get the cost
and makespan efficient scheduling. Even though this algo-
rithm is not able to assure the optimal performance, it is
valuable because of its low time complexity and simplicity.

Secondly, for VM placement, the data-aware VM place-
ment algorithm is introduced to reduce the data trans-
fer delay by the optimization for VM placement and
their allocated data rates in [15]. In [16], the network-aware
VM placement in a heuristic way is introduced to guar-
antee the network performance between VMs specified by
user in distributed clouds. In this paper, we propose the
two-phases algorithm for workflow processing in mobile
cloud : the greedy based workflow co-scheduling phase and
the resource profiling based placement phase. The greedy
based workflow co-scheduling phase consolidates the
scheduled VM instances in a parallel manner to decrease
the resource usage cost within the deadline assurance. The
resource profiling based placement phase locates a VM
instance to a certain physical host in the multi cloud using
the profile on the property of clouds to comply with the
budget while maximizing the service quality. Finally, we
implement the mobile cloud system called Mobile Cloud
Broker(MCB) with cost adaptive VM management based on
the two-phases algorithm for providing the workflow appli-
cation service and demonstrate that our MCB outperforms
the cloud systems with traditional VM management through
several experimental results.

2 Brokering service model in mobile cloud

MCB is shown in Fig. 1. The connector(i.e. a type of
mobile application) provides a remote control interface to
use the virtual device of MCB. The virtual device pro-
vides augmented resources virtually to mobile service users
with various services (e.g. scientific applications). Espe-
cially, the MCB provides the workflow designer through
the virtual device so users can specify their request descrip-
tion and submit the workflow application graphically toxl
the workflow manager of MCB. The workflow manager
parses the submitted workflow and schedules VM flavor
type and instance to each sub-task within the workflow
according to the given SLA with the greedy based workflow
co-scheduling. The resource manager decides the certain

physical host within multi-cloud for the VM creation
request of the specific VM type from workflow manager
and provisions the VM instance with the resource profil-
ing based placement. The resource profiler collects and
maintains the meta-data of each cloud provider such as
available cloud services, price and the performance related
information to consider the heterogeneity of cloud resource.

3 Two-phases algorithm for cost adaptive VM
management

3.1 Phase 1: Greedy based workflow co-scheduling

The workflow is represented as a directed acyclic graph
G = {T , E}, where T is a set of structure-dependent tasks
t and E is a set of edges e between tasks. By the ini-
tial VM scheduling process in the workflow manager, VM
instances are scheduled to each task in the light of the dead-
line dlG. Obviously, as the performance of the VM instance
is improved, its cost is also increased proportionally. The
resource usage cost for processing of a workflow G in cloud
service is given by

Cost (G) =
m∑

i=1

c
p
vmi

[
f tp

(
t
vmi

last

) − stp
(
t
vmi

f irst

)]
(1)

where m is the number of allocated VM instances, vmi is a i

th allocated VM instance and c
p
vmi

is an unit cost for the VM
instance vmi with billing time unit p such as hour, month
and year. ft and st are the finish time and the start time of
the task processing, respectively. t

vmi

last and t
vmi

f irst are the last
and first task processed on vmi . The total processing time
of workflow G, tptG is given as follows

tptG = tpt (tn) (2)

tpt (ti) = etp(ti) + max∀tj ∈Tpred(i)

{
tpt (tj ) + t tp(tj , ti)

}
(3)

0 ≤ tptG ≤ dlG (4)

where n is the number of tasks of workflow G, tn is an
end task of the workflow G, Npred(i) is a set of predecessor
tasks of task ti and t tp

(
tj , ti

)
is a transmission time of the

data from task tj to ti . The total processing time of a task
ti , tpt (ti) means a critical path length from the start task t1
to ti . If the task ti is the end task (i.e. i = n), then tpt (ti)

equals a whole critical path length of the workflow G, tptG.
It should be assured that tptG does not exceed the deadline
dlG of the workflow G as represented in above inequality
Eq. 4. In our proposed algorithm, two arbitrary tasks are co-
scheduled for a single VM instance instead of that they are
scheduled for distinct VM instances. That is, two integrated
tasks are processed on the common VM instance (or called
target VM instance in this paper) simultaneously in parallel.
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Fig. 1 Architecture of mobile
cloud broker

Figure 2 shows an example of the proposed co-scheduling
algorithm. Task 1 and 6 are co-scheduled and allocated in
VM instance 2; task 2 and 5 are co-scheduled and allocated
in VM instance 3. In Fig. 2a, each required resource alloca-
tion time (time unit is p) is 3, 2 and 2 for VM 1, 2 and 3,
respectively. However, after task co-scheduling in Fig. 2b,
the each required resource allocation time is decreased to
2, 2 and 1 for VM 1, 2 and 3, respectively. Consequently,
the resource usage cost can be decreased by using proposed
task co-scheduling approach. Obviously, while the resource
usage cost is decreased by task co-scheduling, the undesi-
rable computing overhead (e.g. context switching) may be
occurred by the parallel execution of integrated tasks. The
striped rectangles next to task 1, 2, 5 and 6 represent the
delay caused by task co-scheduling. The each increased
execution time for task ni and nj on target VM instance
vmtar through task co-scheduling is etco−sched

(ti ,tj )
(ti , vmtar )

and etco−sched

(ti ,tj )

(
tj , vmtar

)
,respectively, and it is recorded in

the co-scheduling time table.
It is assumed that we are able to establish the co-

scheduling time table before the actual workflow processing
by several performance prediction approaches referring to
existing works [17]. In spite of the delay occurrence of each
sub-task caused by task co-scheduling, the total processing
time of workflow should satisfy the users deadline. There-
fore a co-scheduled task pair which is composed of the
inserted task (i.e. re-scheduled task to target VM instance)
and the native task (i.e. originally scheduled task on target
VM instance) should satisfy the constraints as follows
(1) Constraint 1 for task co-scheduling

When the arbitrary task ti is re-scheduled to the
target VM instance vmtar , it is not allowable for

VM instance vmtar to have three or more over-
lapped running tasks simultaneously since it is difficult
to predict its increased execution time by task co-
scheduling. That is, the upper bounding number of
processing tasks simultaneously on target VM instance
is two.

(2) Constraint 2 for task co-scheduling
The deadline of workflow should not be violated
by the delay caused by task co-scheduling. Suppose
that co-scheduled tasks ti and tj on VM instance
vmtar comply with above Constraint 1. When the
original execution time of the task ti on vmtar is
et (ti , vmtar ), then the increased execution time of task
ti , et ′ (ti , vmtar ) is calculated as follows

et ′ (ti , vmtar ) = et (ti , vmtar )

+
(
etco−sched

(ti ,tj )
(ti , vmtar ) − et (ti , vmtar )

)
·

otG
(
ti , tj , vmtar

)

otco−t imeT able

(
ti , tj , vmtar

) (5)

where otco−t imetable

(
ti , tj , vmtar

)
is an overlapped

length of original execution time of task ti and tj on
VM instance vmtar in the co-scheduling time table
and, otG

(
ti , tj , vmtar

)
is that in the workflow G. After

task co-scheduling of task ti and tj on VM instance
vmtar , the original execution time et (ti) of task ti and
et (tj ) of tj are replaced with increased execution time
et ′ (ti) of task ti and et ′(tj ) of tj , respectively. The start
time and finish time of the whole tasks associated with
task ti and tj are also updated. Finally, the total pro-
cessing time of workflow G, tptG is updated. The up-
dated tptG should satisfy the deadline dlG under Eq. 4.
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Fig. 2 An example of workflow
co-scheduling process for
resource usage cost saving.
(a) before task co-scheduling of
workflow, (b) after task pair
(1, 6) and (2, 5) co-scheduling
for VM 2 and 3, respectively

(a)

(b)

(3) Constraint 3 for task co-scheduling
The task co-scheduling procedure should derive bene-
fit of resource usage cost since it bears the cost of the
increased workflow processing time. Therefore, the
resource usage cost has to be decreased after the task
co-scheduling as follows, Eq. 6.
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(6)

where t
vmor

f irst and t
vmor

last are the first and the last scheduled
task on the VM instance vmor , respectively. The left side
of Eq. 6 represents the original resource usage cost before
task co-scheduling and the right side represents the updated
resource usage cost after task co-scheduling in which task
ti is re-scheduled from vmor to the target VM instance vmt .
Equation 6 describes that task co-scheduling is available
only if the resource usage cost reduction can be achieved
by the task co-scheduling. The arbitrary co-scheduling pair
composed of re-scheduled task ti and its overlapped task tj
on VM instance vmtar , which satisfies all the constraints
which described above can be included in a co-scheduling
candidate list. After all the possible co-scheduling pairs
are found, we select a co-scheduling pair which achieves
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the maximum resource usage cost saving among the
co-scheduling candidate list. Therefore, we obtain Eq. 7 by
using Eq. 6 as follows

co-SchedPairG = argmin
(ti ,tj )

{
cvmor ·

[
f t

(
t
vmor /{ti }
last

)

−st
(
t
vmor /{ti }
f irst

)]
+ cvmtar ·

[
f t

(
t
vmtar∪{ti }
last

)

−st
(
t
vmtar∪{ti }
f irst

)]}
, ∀ti , tj ∈ T G, ∀ti , tj /∈ T G

co−sched (7)

After the task ti and tj are co-scheduled on VM instance
vmtar , they are released from the co-scheduling candi-
date list and inserted into the co-scheduling completed list
T G

co−sched . Consecutively, the schedule of all the sub-tasks
of the workflow G is updated, and the co-scheduling candi-
date list is evacuated. The procedure for generation of new
possible co-scheduling pairs is repeated for remain tasks
are not yet co-scheduled in the workflow G. Finally, the
task co-scheduling procedure is definitely finished when
there are no possible co-scheduling pair in the workflow
any more. Algorithm 1 shows the task co-scheduling pro-
cedure in detail. The notation OC(t, vm) and OT (t, vm)

represent the count of overlapped tasks of task t and its
overlapped tasks on VM instance vm, respectively. The tem-
porary duplication G’ of the input workflow G initially
scheduled by [13, 18] is generated to enable the resume
procedure in line 13.

3.2 Phase 2: Resource profiling based placement

The resource profiling based placement algorithm locates a
VM instance to a certain physical host in the multi-cloud
using the profile on the property of clouds in order to com-
ply with the budget while maximizing the service quality
such as the data transmission delay, the heterogeneity [19]
of cloud resources on a workflow application service. There
are also two policies compute-aware and network-aware
placement policy. The compute-aware placement policy
provides the cloud resource having better computing capa-
bility in the given cost, considering the heterogeneity [19]
of cloud resource. The better computing capacity means the
ability to finish a certain task faster. To achieve this object,
we use CPU model rank table provided from [20]. The avail-
able physical nodes availablePN in multi-cloud are sorted
based on the rank in the CPU model rank table and the high-
ranked physical node is provisioned with high priority. If
there is no available resource capacity in the high-ranked
physical node for the requested flavor type f , the another
physical node ranked higher while having enough resource
capacity is decided. Algorithm 2 shows the compute-aware
placement policy.

The network-aware placement policy provides the cloud
resource having better network performance on the past
created VM for each user in order to guarantee the data
transmission time between VMs. To achieve this object,
the table LastUsedResourceTable which stores the last used
resource information such as cloud, physical node for each
user is maintained and the VM instance requested in the
future is provided in the same physical node with the last
used resource if possible for each user. If the resource capac-
ity of this physical node is not available for the requested
flavor type f , available physical nodes availablePN are
sorted in the closest order from the physical node of the last
used resource. The new physical node as close as possible
to the physical node of the last used resource while hav-
ing enough resource capacity for flavor type f is decided.
After providing the VM instance in the new physical node,
the new physical node is updated to the last used resource
table for the corresponding user. Algorithm 3 shows the
network-aware placement policy.
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4 Experimental environment and performance
evaluation

In this section, we demonstrate the superiority of MCB by
evaluating the performance of cost adaptive VM manage-
ment. We use the Openstack cloud environment and the
available VM types in Openstack cloud environment are
small type(1 CPU, 2GB MEM, 10GB Disk), medium type(2

CPU, 4GB MEM, 10GB Disk) and large type(4 CPU, 8GB
MEM, 10GB Disk). We build the cloud testbed using 6
nodes with the deployment of openstack cloud environment
as shown in Fig. 3. [21]. Node 1,5 are nova controller and
node 2,3,4,6 are nova compute nodes. Node 1-4 have the
hardware with Intel, Xeon E5620 2.4G, Core 16, MEM
16G, HDD 1T and the software with Ubuntu 12.04 OS.
Node 5,6 have the hardware with Intel, Xeon W3520 2.67G,
Core 8, MEM 16G and the software with Ubuntu 12.04 OS
Fig. 3.

4.1 Performance evaluation for phase 1

The greedy based workflow co-scheduling algorithm
is evaluated against conventional workflow scheduling
approaches such as MDP based partitioning and Gain/Loss
algorithms [13, 22]. We adopt the Montage project as a
practical workflow example that is a famous open-source
based scientific application [9].The Montage project has
been invoked by the NASA/IPAC Infrared Science Archive
as a toolkit for assembling Flexible Image Transport System
(FITS) images into custom mosaics. We design the Montage
workflow example as shown in Fig. 4. The deadline dlG

with deadline factor α (0 ≤ α ≤ 1) is established as follows

dlG = min
(
tptG

)
+ α

(
max

(
tptG

)
− min

(
tptG

))
(8)

The minimum processing time of the workflow is achieved
when all the sub-tasks of workflow are processed with
fastest VM flavor type allocation. Otherwise, the maximum
processing time of the workflow is derived when all the
sub-tasks of workflow are allocated on cheapest VM flavor
type instance.

In order to compare our proposed workflow co-
scheduling algorithm with existing approaches, we mea-
sured resource usage cost and workflow processing time.
The resource usage cost of each workflow scheduling algo-
rithm is shown in Fig. 5. As the deadline factor α is

Fig. 3 Experiment environment
of mobile cloud broker with
Openstack
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Fig. 4 Montage example for performance evaluation

increased, the whole resource usage cost is decreased since
the necessity for the capacity of the allocated resource to be
high is decreased because of the loose deadline of a work-
flow. Our proposed algorithm always achieves the higher
cost saving performance than that of existing workflow
scheduling algorithms regardless of the size of deadline
factor. The resource usage cost curve of GAIN algorithm
at α = 0 shows a dramatic rise since it is not an opti-
mized but a heuristic based approach so this is not able
to assure the consistent cost saving performance in all the
cases. However, our proposed algorithm achieves the con-
sistent performance improvement even though it is also a
heuristic based approach because of its greedy characteris-
tic. As shown in the graph, the resource usage cost of the
workflow co-scheduling is lower than the MDP based par-
titioning by 17 % and the GAIN/LOSS algorithm by 30 %.
Figure 6 shows the total processing time of each workflow
scheduling algorithm. By using Eq. 8, the each deadline is
(0, 482), (0.2, 507), (0.4, 532), (0.6, 556), (0.8, 581) and
(1, 605) according to each deadline factor α in Fig. 5. As
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Fig. 5 Resource usage cost of the workflow co-scheduling algorithm
and conventional approaches
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Fig. 6 Total processing time of the workflow co-scheduling algorithm
and conventional approaches

shown in Fig. 6, we verify that the workflow co-scheduling
algorithm assures the deadline compliance since it is allo-
wable only for the task pair satisfying the Constraint 2 des-
cribed earlier to be co-scheduled in our proposed algorithm.

4.2 Performance evaluation for phase 2

We want to evaluate the performance of compute-aware
placement policy compared to the conventional placement
algorithm proposed by [23] first. We adopt the chemical
application service treated by [23]. Specifically, we use a
single compute-intensive task QSAR Analysis of MapChem
application which is an integrated chemical application
for collaborative pharmaceutical research and the available
input data types are sdf30, sdf100, sdf200 (sdf100 means
the input data which includes a hundred of chemical com-
pounds information expressed by structure data format). In
this experiment, to evaluate the ability which guarantees
the SLA required by user while minimizing cost, we mea-
sure the SLA violation and the total cost when the requests
are occurred in the fixed interval over a period of time on
each algorithm. We repeat these experiments with different
request interval times (4 sec, 3.6 sec, 3.2 sec, 2.8 sec, 2.4
sec, 2 sec, 1.6 sec, 1.2 sec, 0.8 sec) within 3min. The SLA
of QSAR service is defined as deadline and it is set in ran-
dom on each request. The input data type of the request
is also randomly chosen from available input datas such as
sdf30, sdf100, sdf200. The metric of cost is defined as rel-
ative cost which has a theoretical meaning for comparison
between algorithms [23] and the metric of SLA violation is
defined as the number of request which violates the deadline
required by user.

In Fig. 7, we see that the total cost of the proposed algo-
rithm [23] is lower than that of the conventional one by
58 % on average over all interval times of the request. The
conventional algorithm prepares an extra VM in advance to
reduce the delay from the VM initiation time so at least one
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Fig. 7 Cost performance of proposed system and conventional system

empty VM is always kept. This mechanism makes the waste
of resource and occurs the high cost. On the other hand,
the proposed algorithm does not make the extra resource
because we judge that the VM initiation time is not critical
compared to the execution time of a request and provides the
more minimal cost on the same VM specification compared
to the conventional algorithm considering the heterogeneity
of cloud resource.

Figure 8 shows that the proposed algorithm has the
similar or smaller SLA violation over the entire request
interval time compared to the conventional algorithm. It
means that the proposed algorithm achieves to guarantee
the SLA while minimizing the cost considering the het-
erogeneity of cloud resource. Secondly, to evaluate the
performance of the network-aware placement policy, we
adopt Burrows-Wheeler Aligner (BWA) which is the typical
bio scientific application for aligning or mapping low-
divergent sequences against a large reference genome, such
as the human genome [24]. This application has various
tasks (i.e. BWA index, alignment, pairing and view etc.) and
has dependencies between the tasks so network-intensive

Fig. 8 SLA violation performance of proposed system and conven-
tional system

Fig. 9 Total execution time of proposed system and conventional
scheme

because the data transmission is often occurred between
tasks. We evaluate the performance of the network-aware
placement policy compared to the typical network-aware
placement algorithm proposed in [16]. In this experiment, to
evaluate and compare the data transmission delay occurred
while executing the BWA service, we measure the total
execution time on each algorithm when the requests are
occurred in the fixed interval over a period of time. We
repeat the experiment with different interval times (8 sec,
7 sec, 6 sec, 5 sec, 4 sec) within 3 min. The request is
comprised of the BWA tasks such as index, alignment, pair-
ing and view and the input data to each task is same for
each request. To be independent to the computing perfor-
mance, we use the physical nodes in the same specification
(Node1 - Node 4) and all tasks are allocated in the large
VM type. Figure 9 shows that the proposed algorithm has
the smaller total execution time by 6 % on average over the
entire request interval time compared to the conventional
algorithm [16]. It means that the data transmission delay
occurred on the proposed scheme is smaller than the con-
ventional algorithm. In other words, the proposed algorithm
guarantees the network performance between VMs on the
BWA service. The conventional algorithm is concentrated
on the placement for a VM creation requested at a certain
time so cannot guarantees the network performance for the
successive VM creation requess. As a result, the conven-
tional algorithm shows the worse performance on the BWA
service which needs the successive VM creation.

5 Conclusion

In this paper, we propose the two-phases algorithm and
implement the mobile cloud broker for workflow applica-
tion service in the mobile cloud with the cost adaptive VM
management. In the experimental results, the greedy based
workflow co-scheduling algorithm reduces the resource
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usage cost about 17 % at least compared to the tradi-
tional workflow scheduling approaches while guarantee-
ing the deadline. The resource profiling based placement
not only reduces the resource usage cost about 58 % on
compute-intensive application but also improves the data
transmission delay about 5 % on network-intensive applica-
tion compared to existing placement algorithms. Finally, we
demonstrated that our proposed system with this two-phases
algorithm outperforms other traditional systems in terms of
both cost and processing time.
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