
A QoS Constrained Workflow Scheduling Scheme

Using Task Division in Cloud

Yun-Gi Ha, Seong-Hwan Kim, Ji-Soo Choi, Seong-Min Song, Chan-Hyun Youn
Department of Electrical Engineering, KAIST

E-mail{yungi.ha, s.h_kim, jisoochoi, songsm87, chyoun}@kaist.ac.kr

Abstract

Various scientific workflow applications take

advantage of cloud infrastructures which enables them
process data with efficiency. In the cloud computing
environment, workflow scheduling is the core which
impacts on the job processing performance, the
resource utilization and the throughput of workflow
management system. We propose a Quality of Service
(QoS) constrained workflow scheduling scheme using
the task division in order to assure delivery of workflow
service within certain deadline and minimized cost
constraint. We show the effectiveness of the proposed
scheme by comparing the completion time and cost of
the workflow processing request for the workflow
scheduling scheme with and without task division, while
increasing the deadline constraint.

1. Introduction

Cloud computing provides its customer computing
resources with scalability in pay-as-you go manner.
These resources are provisioned and made available
easily, which drags many organizations to it.

Scientific workflows, which are used to model
applications of complex large scale data analysis, also
benefits from cloud infrastructures. These workflow
applications require assurance for service level that each
request finishes within certain time and cost constraint.
Thus, workflow scheduling needs to analyze a user’s
Quality of Service (QoS) constraints then map each task
onto the appropriate virtual machine so that the
execution result is able to satisfy user requirements [1].
Also, it is not the goal for workflow scheduling to find
the way to make execution at the earliest, but to make it
under the user specified constraints.

[2] proposes a workflow scheduling algorithm which
assigns executable tasks onto the least expensive
computing resources. Executable task indicates
unexecuted task of which the execution for parent tasks
is finished. Once it finds a schedule, it compares the
expected completion time to the deadline constraint. If

the expected completion time is larger than the deadline
constraint, it removes the least expensive computing
resource from the resource pool than repeats whole
procedure until it finds the suitable schedule. This
algorithm has some limitations. It may incur many
iterations to meet the deadline constraint. Also, as it is
kind of the static scheduling scheme, the solution can be
not optimal because situation is not always changeless
[3].

[4] introduces the workflow scheduling scheme
which partitions a workflow then distributes the time
constraint to each task. On the contrary to [3], while
taking care of workflow topology, it utilizes the
subdeadline for each task and overall deadline to find
the suitable resource. Hence, this algorithm produces
decent plan for the executable task without repeating
subdeadline decision. However, it doesn’t consider one
of the attributes in cloud that it supports a user to utilize
considerable computing power in pay-as-you-go
manner, when the tasks are partitionable and
transferable their load.

Our involvement in this article is twofold. First, the
proposed scheduling scheme investigates each task’s
fastest completion time along the workflow topology
then decides its distribution rate. Then, it allocates VM
onto the task according to the remaining deadline and
the task’s distribution rate. Second, when there is no
match, it divides and executes task based on the task’s
minimum size and the task’s subdeadline, which is
called as divisibility factor [5].

2. System Architecture for the Cloud
Workflow Management System

We depict our cloud workflow management system
which consists of three main components. It has three
core components – Workflow Scheduling Engine,
Resource Provisioning Manager, and Policy Manager.
Workflow Scheduling Engine is in charge of interacting
with Workflow Modelling Interface, which is the
entrance for an application service. A user generates the
processing request of scientific applications then submit

the request to the management system with additional
QoS related components using the Workflow Modelling
Interface. Also, Workflow Scheduling Engine
manages and executes those submitted workflows.
Topology Analyzer module parses submitted workflow
then interprets the topology of the workflow to figure
out whether user-specified QoS constraints are enough
to process the workflow request. Then, Policy Adaptor
module communicates with Policy Manager to make
workflow scheduling adaptively with user-specified
QoS constraints. If the QoS constraints are sufficient to
process the request, then Workflow Executor module
initiates workflow scheduling and task execution. If
they are not, then the request is rejected.

 Policy Manager maintains and decides workflow
scheduling policies which are strategies to satisfy QoS
constraints. Policy Manager chooses and provides
optimal workflow scheduling policies to Workflow
Scheduling Engine based on the workflow topology
analysis. The policy contains scheduling strategies, such
as deciding Virtual Machine (VM) resource service type
which is mapped for each task, deciding the
environment for task execution. Policy Decision Maker
module decides the workflow scheduling policies by
referring to the Execution history repository and Policy
repository. Decided policy is passed to Workflow
Scheduling Engine to perform workflow scheduling
according to the policy.

3. A Workflow Scheduling Scheme Using
Task Division

Kim [6] proposed a workflow scheduling scheme
using Petri-Net which has two phases, scheduling phase
and execution phase respectively. It finds out the critical
path [7] for the given workflow, which is the path that
decides the deadline for the workflow, then assigns
suitable VM according to the load proportion of each
task.

We define a task which can be partitioned into two
subtasks which have the same load as they do not have
any precedence relations and all elements in the task
are identical type of processing is defined as divisible
task [5]. Examples of divisible tasks are aln process of
BWA applications [8] and chem computing of
MapChem [9] which usually take form of loop and don’t
have dependency within a single task. Also, we define
the divisibility factor () for each task to set the
division threshold, which is the maximum number of
partitioned subtask. In this paper, we only consider half
division to avoid high complexity in task scheduling.
Therefore, a task of which the divisibility factor () equals to n (power of 2) is divided into two
subtask {,, ,, … , ,/} and {,, ,, … , ,}.

We describe our proposed scheduling scheme step by
step using Petri-Net. Each workflow processing request
consists of workflow topology W and deadline D.
Workflow topology W is represented as W= (, ,). = {, , … , } is a set of places which surrounds
each tasks. = {, , … , } is a set of transitions
which represents each task of the workflow topology.
is a set of arcs which is used to connect transition – place
or place – transition pair.
Step 1. Calculate the earliest completion time CT and
load rate () for each task

We compare the earliest completion time with user
specified deadline. We set the initial marking of token
as = [0 0 0 … 0 1]. Then the token moves along the
workflow topology path reversely investigating each
task’s earliest completion time and the load rate of the
each task.

The earliest completion time CT is the sum of the
earliest completion time of task on the critical path [7].
We assume that we already collected the execution time
information for all tasks on different VM type. Let
be the earliest completion time of task j on the critical
path, then CT is determined as shown in Eq. (1). = (1)

Also, we can derive r () as Eq. (2). () = + ∑ (2)

Step 2. Divide the task according to the divisibility
factor () , the load rate () for each task and
remaining deadline while considering the cost model
then allocate proper resource

We set the allocated execution time for each task () based on remaining deadline and the load rate ().
 () = () ∙ (− ()) (3)

In Eq. (3), () indicates total execution time spent

before processing task . We use task profiling matrix
shown in Table 1 to find the cheapest way to process
the task within ().

When there exists a VM which can execute the task
within (), then task division is not considered. On
the contrary, there is no satisfactory VM, we divide the
task half then look up task profiling matrix to find the
way we can execute the task within (). If it still
doesn’t have the adequate VM, then we repeat division
until we find the proper VM or the task meets the end of ().

If the task division is applied, then we compare the
profit calculated from the cost model in Eq. (4) for

division case and non-division case to proceed the
workflow scheduling in more profitable way.

 = − − (4)

In Eq. (4), indicates the profit until the scheduler
processes task . is total VM leasing cost. is
penalty cost which is caused by SLA violation.

 = + ∙ , if > 00, otherwise (5)

 = ,{} − (), if () − > 00, otherwise (6)

In Eq. (5) and 6, indicates SLA violation, which

is caused by mapping the task onto the VM which
cannot process the task within ().

4. Evaluation
4.1 Experiment Setting

Fig.1 shows the structure of the experimental
environment which consists of workflow designer,
MySQL database, cloud broker, and OpenStack Cloud.
We used MapChem [9] application to compose the
services into the workflow topologies.

We performed the experiment with workflow
topologies with balanced structure and unbalanced
structure [1] as shown in Fig.2. Within these workflows,
tasks are randomly generated. We made workflow
execution requests by specifying Pipeline ID of a
workflow topology and deadline to see applying task
division expands QoS-guaranteed range without
sacrificing cost constraint.

4.2. Experimental Result

We measured and compared completion time and
cost spent to execute different workflows with and
without task division.

From Fig.3 and Fig.4, when relatively low deadline
is given, we can see that applying task division can
execute the request within given deadline while
reducing the cost constraint.

5. Conclusion

In this paper, we proposed a QoS constrained
workflow scheduling scheme using task division which
is a kind of the phased scheduling scheme. It has merits
in dealing with the uncertainty of task execution time
which is changed by the state of the VM resource and
finding the near-optimal schedule for processing the
workflow execution request without path guessing. Also,
we suggested to apply the task division policy that
divides then execute a task when SLA violation cost is
big in order to expand QoS-guaranteed region and to
improve robustness to resource performance variance.

In order to evaluate the performance, we measured
the cost and the completion time for the proposed
scheme and Kim [6]’s algorithm while increasing
deadline. We could see that the proposed algorithm
provides broader QoS-guaranteed region. Therefore, we

(a) balanced structure (b) unbalanced structure

Fig. 2. Workflow topologies for the experiment [1]

Table 1. Example of task profiling matrix for task of which () equals to 8

Fig 1. Experimental environment

concluded that the proposed scheme provides broad
QoS-guaranteed service region. In the future, we can
develop our idea to consider and cope with other
uncertainties, for example, dynamic VM resource price.
Furthermore, we can make advance for the proposed
scheduling scheme to consider multi QoS constraints
simultaneously by determining new workflow policy.

References
[1] Yu, Jia, et al., "Workflow scheduling algorithms for
grid computing." Metaheuristics for scheduling in
distributed computing environments. Springer Berlin
Heidelberg, 2008. 173-214.
[2] Menasce, Daniel A., and Emiliano Casalicchio. "A
Framework for Resource Allocation in Grid
Computing." MASCOTS. 2004.
[3] Xiao, Zhijiao, and Zhong Ming. "A method of
workflow scheduling based on colored Petri nets." Data
& Knowledge Engineering 70.2 (2011): 230-247.
[4] Yu, Jia et al., "Cost-based scheduling of scientific
workflow applications on utility grids." e-Science and
Grid Computing, 2005. First International Conference
on. IEEE, 2005.
[5] Bharadwaj, Veeravalli et al., "Divisible load theory:
A new paradigm for load scheduling in distributed
systems." Cluster Computing 6.1 (2003): 7-17.
[6] Kim, Daesun (2014)., “Adaptive Workflow
Scheduling Scheme Based on the Colored Petri-Net

Model in Cloud.” Master’s thesis, Korea Advanced
Institute of Science of Technology
[7] Kelley Jr, James E. "Critical-path planning and
scheduling: Mathematical basis." Operations Research
9.3 (1961): 296-320.
[8] BWA. Available: http://bio-bwa.sourceforge.net/
[9]PharosDreams. Available: http://www.pharosdreams.
com/desktop/desktopsolution/home.html

(a) balanced structure (b) unbalanced structure

Fig. 6. Cost for balanced and unbalanced structure

0

20

40

60

80

100

0.7 0.8 0.9 1 1.1 1.2 1.3

Division No Division

User Deadline

C
o
st

0

10

20

30

40

50

60

70

80

0.7 0.8 0.9 1 1.1 1.2 1.3

Division No Division

User Deadline

C
o
st

(a) balanced structure (b) unbalanced structure

Fig. 5. Execution time for balanced and unbalanced structure

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.7 0.8 0.9 1 1.1 1.2 1.3

Division No Division

User Deadline

Ex
ec

ut
io

n
Ti

m
e/

D
ea

d
lin

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.7 0.8 0.9 1 1.1 1.2 1.3

Division No Division

User Deadline

Ex
ec

ut
io

n
Ti

m
e/

D
ea

d
lin

e

