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Abstract 

 
Various scientific workflow applications take 

advantage of cloud infrastructures which enables them 
process data with efficiency. In the cloud computing 
environment, workflow scheduling is the core which 
impacts on the job processing performance, the 
resource utilization and the throughput of workflow 
management system. We propose a Quality of Service 
(QoS) constrained workflow scheduling scheme using 
the task division in order to assure delivery of workflow 
service within certain deadline and minimized cost 
constraint. We show the effectiveness of the proposed 
scheme by comparing the completion time and cost of 
the workflow processing request for the workflow 
scheduling scheme with and without task division, while 
increasing the deadline constraint. 
 
1. Introduction 

Cloud computing provides its customer computing 
resources with scalability in pay-as-you go manner. 
These resources are provisioned and made available 
easily, which drags many organizations to it. 

Scientific workflows, which are used to model 
applications of complex large scale data analysis, also 
benefits from cloud infrastructures. These workflow 
applications require assurance for service level that each 
request finishes within certain time and cost constraint. 
Thus, workflow scheduling needs to analyze a user’s 
Quality of Service (QoS) constraints then map each task 
onto the appropriate virtual machine so that the 
execution result is able to satisfy user requirements [1]. 
Also, it is not the goal for workflow scheduling to find 
the way to make execution at the earliest, but to make it 
under the user specified constraints. 

[2] proposes a workflow scheduling algorithm which 
assigns executable tasks onto the least expensive 
computing resources. Executable task indicates 
unexecuted task of which the execution for parent tasks 
is finished. Once it finds a schedule, it compares the 
expected completion time to the deadline constraint. If 

the expected completion time is larger than the deadline 
constraint, it removes the least expensive computing 
resource from the resource pool than repeats whole 
procedure until it finds the suitable schedule. This   
algorithm has some limitations. It may incur many 
iterations to meet the deadline constraint. Also, as it is 
kind of the static scheduling scheme, the solution can be 
not optimal because situation is not always changeless 
[3]. 

[4] introduces the workflow scheduling scheme 
which partitions a workflow then distributes the time 
constraint to each task. On the contrary to [3], while 
taking care of workflow topology, it utilizes the 
subdeadline for each task and overall deadline to find 
the suitable resource. Hence, this algorithm produces 
decent plan for the executable task without repeating 
subdeadline decision. However, it doesn’t consider one 
of the attributes in cloud that it supports a user to utilize 
considerable computing power in pay-as-you-go 
manner, when the tasks are partitionable and   
transferable their load. 

Our involvement in this article is twofold. First, the 
proposed scheduling scheme investigates each task’s 
fastest completion time along the workflow topology 
then decides its distribution rate. Then, it allocates VM 
onto the task according to the remaining deadline and 
the task’s distribution rate. Second, when there is no 
match, it divides and executes task based on the task’s 
minimum size and the task’s subdeadline, which is 
called as divisibility factor [5]. 

 
2. System Architecture for the Cloud 
Workflow Management System 

We depict our cloud workflow management system 
which consists of three main components. It has three 
core components – Workflow Scheduling Engine, 
Resource Provisioning Manager, and Policy Manager. 
Workflow Scheduling Engine is in charge of interacting 
with Workflow Modelling Interface, which is the 
entrance for an application service. A user generates the 
processing request of scientific applications then submit 



the request to the management system with additional 
QoS related components using the Workflow Modelling 
Interface.     Also, Workflow Scheduling Engine 
manages and executes those submitted workflows. 
Topology Analyzer module parses submitted workflow 
then interprets the topology of the workflow to figure 
out whether user-specified QoS constraints are enough 
to process the workflow request. Then, Policy Adaptor 
module communicates with Policy Manager to make 
workflow scheduling adaptively with user-specified 
QoS constraints. If the QoS constraints are sufficient to 
process the request, then Workflow Executor module 
initiates workflow scheduling and task execution. If 
they are not, then the request is rejected.  

 Policy Manager maintains and decides workflow 
scheduling policies which are strategies to satisfy QoS 
constraints. Policy Manager chooses and provides 
optimal workflow scheduling policies to Workflow 
Scheduling Engine based on the workflow topology 
analysis. The policy contains scheduling strategies, such 
as deciding Virtual Machine (VM) resource service type 
which is mapped for each task, deciding the 
environment for task execution. Policy Decision Maker 
module decides the workflow scheduling policies by 
referring to the Execution history repository and Policy 
repository. Decided policy is passed to Workflow 
Scheduling Engine to perform workflow scheduling 
according to the policy. 
 
3. A Workflow Scheduling Scheme Using 
Task Division 
 

Kim [6] proposed a workflow scheduling scheme 
using Petri-Net which has two phases, scheduling phase 
and execution phase respectively. It finds out the critical 
path [7] for the given workflow, which is the path that 
decides the deadline for the workflow, then assigns 
suitable VM according to the load proportion of each 
task. 

We define a task  which can be partitioned into two 
subtasks which have the same load as they do not have 
any precedence relations and all elements in the task  
are identical type of processing is defined as divisible 
task [5]. Examples of divisible tasks are aln process of 
BWA applications [8] and chem computing of 
MapChem [9] which usually take form of loop and don’t 
have dependency within a single task. Also, we define 
the divisibility factor ()  for each task to set the 
division threshold, which is the maximum number of 
partitioned subtask. In this paper, we only consider half 
division to avoid high complexity in task scheduling. 
Therefore, a task   of which the divisibility factor  ()  equals to n (power of 2) is divided into two 
subtask {,, ,, … , ,/} and {,, ,, … , ,}.  

We describe our proposed scheduling scheme step by 
step using Petri-Net. Each workflow processing request 
consists of workflow topology W and deadline D. 
Workflow topology W is represented as W= (, , ).  = {, , … , } is a set of places which surrounds 
each tasks.  = {, , … , }  is a set of transitions 
which represents each task of the workflow topology.  
is a set of arcs which is used to connect transition – place 
or place – transition pair. 
Step 1. Calculate the earliest completion time CT and 
load rate () for each task 

We compare the earliest completion time with user 
specified deadline. We set the initial marking of token 
as  = [0 0 0 … 0 1]. Then the token moves along the 
workflow topology path reversely investigating each 
task’s earliest completion time and the load rate of the 
each task. 

The earliest completion time CT is the sum of the 
earliest completion time of task on the critical path [7]. 
We assume that we already collected the execution time 
information for all tasks on different VM type. Let   
be the earliest completion time of task j on the critical 
path, then CT is determined as shown in Eq. (1).  =    (1) 

 
Also, we can derive r () as Eq. (2). () =   + ∑   (2)  

Step 2. Divide the task according to the divisibility 
factor  () , the load rate ()  for each task and 
remaining deadline while considering the cost model 
then allocate proper resource 

We set the allocated execution time for each task  () based on remaining deadline and the load rate ().  
  () = () ∙ ( − ()) (3)  

 
In Eq. (3), () indicates total execution time spent 

before processing task . We use task profiling matrix 
shown in Table 1 to find the cheapest way to process 
the task within  (). 

When there exists a VM which can execute the task 
within  (), then task division is not considered. On 
the contrary, there is no satisfactory VM, we divide the 
task half then look up task profiling matrix to find the 
way we can execute the task within  (). If it still 
doesn’t have the adequate VM, then we repeat division 
until we find the proper VM or the task meets the end of  (). 

If the task division is applied, then we compare the 
profit calculated from the cost model in Eq. (4) for 



division case and non-division case to proceed the 
workflow scheduling in more profitable way. 

  =  −  −  (4)  
 

In Eq. (4),  indicates the profit until the scheduler 
processes task  .   is total VM leasing cost.   is 
penalty cost which is caused by SLA violation.  

  =  +  ∙  , if  > 00, otherwise (5) 
 

 = ,{} −  (), if  () −  > 00, otherwise  (6) 

 
In Eq. (5) and 6,   indicates SLA violation, which 

is caused by mapping the task onto the VM which 
cannot process the task within  ().  

 
4. Evaluation 
4.1 Experiment Setting 

Fig.1 shows the structure of the experimental 
environment which consists of workflow designer, 
MySQL database, cloud broker, and OpenStack Cloud. 
We used MapChem [9] application to compose the 
services into the workflow topologies.  

We performed the experiment with workflow 
topologies with balanced structure and unbalanced 
structure [1] as shown in Fig.2. Within these workflows, 
tasks are randomly generated. We made workflow 
execution requests by specifying Pipeline ID of a 
workflow topology and deadline to see applying task 
division expands QoS-guaranteed range without 
sacrificing cost constraint. 
 
4.2. Experimental Result 

We measured and compared completion time and 
cost spent to execute different workflows with and 
without task division. 

From Fig.3 and Fig.4, when relatively low deadline 
is given, we can see that applying task division can 
execute the request within given deadline while 
reducing the cost constraint.  
 
5. Conclusion 

In this paper, we proposed a QoS constrained 
workflow scheduling scheme using task division which 
is a kind of the phased scheduling scheme. It has merits 
in dealing with the uncertainty of task execution time 
which is changed by the state of the VM resource and 
finding the near-optimal schedule for processing the 
workflow execution request without path guessing. Also, 
we suggested to apply the task division policy that 
divides then execute a task when SLA violation cost is 
big in order to expand QoS-guaranteed region and to 
improve robustness to resource performance variance.  

In order to evaluate the performance, we measured 
the cost and the completion time for the proposed  
scheme and Kim [6]’s algorithm while increasing 
deadline. We could see that the proposed algorithm 
provides broader QoS-guaranteed region. Therefore, we 

    
(a) balanced structure    (b) unbalanced structure 
 

Fig. 2. Workflow topologies for the experiment [1] 

Table 1. Example of task profiling matrix for task  of which  () equals to 8 
 

 
 

 
 

Fig 1. Experimental environment 



concluded that the proposed scheme provides broad 
QoS-guaranteed service region. In the future, we can 
develop our idea to consider and cope with other 
uncertainties, for example, dynamic VM resource price. 
Furthermore, we can make advance for the proposed 
scheduling scheme to consider multi QoS constraints 
simultaneously by determining new workflow policy. 

 
References 
[1] Yu, Jia, et al., "Workflow scheduling algorithms for 
grid computing." Metaheuristics for scheduling in 
distributed computing environments. Springer Berlin 
Heidelberg, 2008. 173-214. 
[2] Menasce, Daniel A., and Emiliano Casalicchio. "A 
Framework for Resource Allocation in Grid 
Computing." MASCOTS. 2004. 
[3] Xiao, Zhijiao, and Zhong Ming. "A method of 
workflow scheduling based on colored Petri nets." Data 
& Knowledge Engineering 70.2 (2011): 230-247. 
[4] Yu, Jia et al., "Cost-based scheduling of scientific 
workflow applications on utility grids." e-Science and 
Grid Computing, 2005. First International Conference 
on. IEEE, 2005. 
[5] Bharadwaj, Veeravalli et al., "Divisible load theory: 
A new paradigm for load scheduling in distributed 
systems." Cluster Computing 6.1 (2003): 7-17. 
[6] Kim, Daesun (2014)., “Adaptive Workflow 
Scheduling Scheme Based on the Colored Petri-Net 

Model in Cloud.” Master’s thesis, Korea Advanced 
Institute of Science of Technology 
[7] Kelley Jr, James E. "Critical-path planning and 
scheduling: Mathematical basis." Operations Research 
9.3 (1961): 296-320. 
[8] BWA. Available: http://bio-bwa.sourceforge.net/ 
[9]PharosDreams. Available: http://www.pharosdreams. 
com/desktop/desktopsolution/home.html 

 
(a) balanced structure                      (b) unbalanced structure 

 
Fig. 6. Cost for balanced and unbalanced structure 
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(a) balanced structure                     (b) unbalanced structure 

 
Fig. 5. Execution time for balanced and unbalanced structure 
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