
A Phased Workflow Scheduling Scheme
with Task Division Policy in Cloud Broker

Seong-Hwan Kim(&), Kyung-No Joo, Yun-Gi Ha, Gyu-Beom Choi,
and Chan-Hyun Youn

Department of Electrical Engineering, KAIST, Daejeon, Korea
{s.h_kim,eu8198,milmgas,mosfet1kg,chyoun}@kaist.ac.kr

Abstract. In the science area, workflow management systems (WMS) coor-
dinate collaborative tasks between researchers of many research organizations.
Also, WMS effectively compose the high performance computing system with
globally distributed computing resources. In addition, with the maturity of cloud
computing technology, many researches try to enhancing the economic feasi-
bility and system tolerability. While executing a workflow application, a
workflow scheduler, which is in WMS, should recognize the dynamic status of
resources and decide to assign appropriate resource on each task. With the
negotiation procedure, users can ask for saving processing cost or shortening
completion time. However, satisfying these multiple objectives at the same time
is hard to achieve. Therefore, the existing workflow scheduling schemes try to
find the near optimal solution with heuristic approaches. In this paper, we
propose heuristic workflow scheduling scheme with petri-net workflow mod-
eling, resource type mapping in accordance to workload ratio and policy based
task division to guarantee the deadline constraint with minimum budget
consumption.

Keywords: Workflow scheduling � Colored patri-net � Task division policy �
Cloud computing

1 Introduction

In an aspect of modularization, automated processing, expandability, collaborative
works and ease of control and monitor, workflow is appropriate tool for modeling
complicated application. Especially, a scientific workflow is the computerized auto-
mation of a scientific process, in whole or part, which usually streamlines a collection
of scientific tasks with data channels [1]. Since the correct integration of these dis-
tributed services may require an efficient management scheme and tools, a well-
designed workflow management system in cloud is required to completely define,
manage, monitor, and execute scientific workflows through the execution of tasks
whose execution order is driven by a computerized representation of the workflow
logic. To process request of computing workflow from user, workflow scheduling
(resource planning), which allocate available computing resources to each workflow
tasks with amount and allocation time of resources, is required. However, it is difficult
to make optimal scheduling with consideration of multiple QoS (Quality of Service),

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
V.C.M. Leung et al. (Eds.): CloudComp 2014, LNICST 142, pp. 76–86, 2015.
DOI: 10.1007/978-3-319-16050-4_7

inter-task dependency and dynamic status of resources. In cloud environment, we
should also consider the variation of resource capacity over time, the heterogeneity of
resources and the VM (Virtual Machine) leasing cost model from cloud service pro-
viders. Because it is generally considered as NP-complete problem to solve multi
object-workflow scheduling problem, many previous studies generally utilize heuristic
strategies to acquire real-time decision with relatively high optimality [2].

Yu [3] proposed a workflow management system in grid with MDP (Markov
Decision Process) based workflow scheduling scheme while guaranteeing the assigned
deadline. By using the workflow partitioning strategy, they try to find optimal solutions
(assign sub-deadline) on each partial task groups with MDP method. To achieve
deadline guarantee, they consider critical path concept. By assembling local optimums
on each partitioned task groups, they tried to find the global near optimum. However,
since their algorithm can’t consider complexity of cloud price policy, cost can be
wasted in cloud environment. Although, MDP is calculated on partial task groups,
MDP is relatively complex to compute.

In this paper, we propose heuristic workflow scheduling scheme with petri-net
workflow modeling, resource type mapping in accordance to workload ratio and policy
based task division by resolving problems in Phased Workflow Scheduling Scheme [4]
to guarantee the deadline constraint with minimum budget consumption.

2 Workflow Scheduling in a Cloud Broker

In this paper, we consider Users, Cloud Brokers and Cloud Service Providers (CSP) as
actor of our system framework. When user composite and request their own workflow
instance to cloud broker with QoS constraints and budget contraction, it should be
scheduled by Workflow Scheduling Engine (WSE) in cloud broker. Then, WSE should
execute each task depending on scheduling decision in available cloud resources which
are provided by CSP. With cooperation of Resource Provisioning Manager (RPM)
which give abstraction to the VM leasing contraction, CSP cost policy and physical
details of VMs, WSE can easily allocate tasks into proper VMs. RPM manages the
Virtual Machine Pool (VMP) in cloud broker to provide resources into multiple
application sets in efficient way. Because RPM makes reasonable contraction between
multiple CSPs with the profiling and comparing manners, it is more efficient then 1:1
VM leasing contraction between applications and CSPs. Therefore, with the scheduling
to find optimal resource planning to execute workflow and resource provisioning to
make efficient proxy contraction, user doesn’t need to consider the details of complex
procedure to execute workflow after making contraction with cloud broker. Because
billing contraction also contains service level violation penalty which is pay back cost
from cloud broker when cloud broker can’t satisfy service level, cloud broker should
reject the contract when it is unable to achieve. There are many ways to set the
violation penalty cost, but we will use linear penalty cost model [5] in this paper.

Figure 1 shows functional architecture of the proposed cloud broker. It simply has
two core components – Workflow Scheduling Engine and Resource Provisioning
Manager.

A Phased Workflow Scheduling Scheme with Task Division Policy 77

Workflow Scheduling Engine (WSE). WSE provides unified user interfaces for
creating, managing and executing workflow application service. User can compose the
workflow instances with deployed services which are registered by participants for-
merly with service profiling data. When execution requests are given, the WSE should
decide to assign appropriate resource on each task based on the scheduling scheme.
Finally, with task dependencies, collaboration with RPM and resource mapping table,
WSE can execute each tasks to the available VMP resources in order.

Resource Provisioning Manager (RPM). RPM manages virtual machine pool (VMP)
as a logical container. The resources in the VMP represent the leased VMs from the
underlying CSPs. Therefore, the RPM allocates or deallocates the resources in VMP
based on its own resource leasing strategy. Also, RPM shares resources among various
applications.

A problem which finds a schedule for a workflow W ¼ P; Tr;Að Þ to be executed
within user-specified deadline D is defined as Workflow scheduling problem with
deadline constraint. That is, deciding assigned computing resources-to-be set R ¼
fR1;R2; . . .;Rng and assigned time set T ¼ fT1; T2; . . .; Tng according to petri-net
model is illustrated as the problem.

Cloud Virtual Machine Type is defined by combination of parameters which are
time-invariant and continuously capable of being guaranteed by cloud service pro-
viders. (e.g. number of CPU cores: VTc, clock rate of a CPU: VThz, memory size of the
virtual machine: VTm, storage size of the virtual machine: VTs) In this paper, we only
consider factors which are directly related with job processing time. Therefore, a Cloud
Virtual Machine Type is illustrated as VTj ¼ ½VTcj ;VThzj ;VTmj � and exists as a finite set
VT ¼ fVT1;VT2; . . .;VTmg. In addition, leasing cost per unit time for arbitrary virtual
machine VTj is defined as CVTj .

Fig. 1. Architectural model of the proposed cloud broker

78 S.-H. Kim et al.

Application Profiling is the method to figure out expected execution time for a task
ti when it is processed on virtual machine type VTj and manage the execution time data
in the form of table. The row of table represents different task type ttkð¼ ti;type; 1�
k� lÞ and the column represents virtual machine type VTj Each execution time data
Tttk
VTj is the average value acquired from enough times of repeated execution.
Also, we define cost model to figure out workflow processing cost using cloud

resources. When denote VM usage time for the VM type VTj as T
ttk
VTj , Then, execution

cost required to process given workflow is described as following equation

execution cost ¼
X

i
CVTj � Tttk

VTj : ð1Þ

3 Phased Workflow Scheduling Scheme with Task
Division Policy

In order to resolve the cost minimization while deadline-guaranteed workflow sched-
uling problem, we should pay the least at individual task processing by assigning
appropriate resource. Also, the whole workflow schedule made by individual task
scheduling should satisfy user-specified deadline. Kim [4] proposed phased workflow
scheduling scheme. With the colored petri-net model, colored token which conducts
different action on workflow topologies according to its color is defined to control the
scheduling of given workflow topology. The scheme is composed with two phases:
First one is Scheduling Phase, which decides the workload proportion and allocate sub-
deadline into each task by backward token forwarding of scheduling token through
petri-net. Second one is Execution Phase, assigns proper resource according to the load
proportion of each task not to violate sub-deadline by forwarding execution token. As a
result, the path which is in charge of the most portion of load in the workflow, namely,
critical path is found out and delivered by the scheduling token. Because scheme use
quietly simple and intuitive heuristic, it is fast enough to utilize in real-time workflow
management system. Although this scheme takes advantage of static estimated task
processing time, it is categorized as the dynamic scheduling as it carries out task
scheduling according to the remaining service level indicator. Therefore, workflow
management system can endure system fault from resources. However, when deadline
which is shorter than the shortest estimated execution time of given workflow is
required from user, it is not able to find a schedule which can satisfy user-specified
deadline because of its finite resource set. Also, with the finite resource set, if pro-
cessing delay exceed certain level, we can’t guarantee the deadline, because we can’t
utilize better resources to compensate delays for processing remaining tasks.

To overcome the problems, we defined divisible task using the concept of arbi-
trarily divisible task. A task ti which can be partitioned as they do not have any
precedence relations and all elements in the task ti are identical type of processing is
defined as divisible task [6]. A divisible task ti whose critical degree (cd), which is
defined as the maximum number of partition of a task, is n can be divided into sub-
tasks ti;1; ti;2; . . .; ti;n

� �
. For these divisible task, we can reduce job processing time by

A Phased Workflow Scheduling Scheme with Task Division Policy 79

distributing partitions of tasks to multiple resources. Though task division makes
workflow processing time reduced, task division is not always carried out as it is not
appropriate to reduce required cost and processing time, namely, the goal of workflow
scheduling problem. Therefore, we should determine when we have to proceed division
based on processing time and required cost.

In this paper, we only consider half-load division to control scheduling complexity
and size of historical data in low level. In addition, it is assumed that the load of each
partitioned task is the same. Also, subtask type is defined by its size of load. r partial
tasks gathers to compose subtask type ttk;frg whose cdðttk; rf gÞ ¼ r. Additional appli-
cation profiling for all kinds of task bunches is required to measure execution time of
each subtask type ttk;frg on different resource type VTj. Example of application profiling
table is shown in Table 1.

Workflow Scheduling Phases
When a user submits a workflow execution request, then the cloud broker should map
proper resources to tasks. We introduce the QoS constraints scheduling scheme which
is used to schedule each task onto appropriate VM type. We assume that token forward
and backward matrix is already extracted by analysis of workflow topology. Then we
can move our token with multiplication of token status vector and token forward/
backward matrix.

Phase I. Calculate the load rate r(p) for each task
We set the initial marking of token vector for first phase as M ¼ ½0. . .01�. Then the

token moves through backward matrix along the workflow topology path reversely
investigating each task’s the load rate. The load rate rðpÞ on a place p is the rate of the
transition (task)’s relative load compared to relative load of its critical path.

r pð Þ ¼ rl pð Þ
cpl pð Þ : ð2Þ

Also, relative load is defined as average execution time for a task on VM types:

rl pð Þ ¼ avrj Ttype p�ð Þ
VTj

� �
¼ 1

m
�
X

j
Ttype p�ð Þ
VTj : ð3Þ

In addition, Critical path on a task is defined as set of following tasks which is
composed of biggest relative load [7]. Then, we can figure out critical path load:

Table 1. Example of application profiling for divisible task whose cd equals 8

80 S.-H. Kim et al.

cpl pð Þ ¼ f xð Þ ¼ maxp�� cplðp��Þ; if p�� exist
0; otherwise

�
: ð4Þ

Because we assume that we already collected the application profiling matrix for all
tasks on different VM type, we can calculate load rate on entire workflow in static way.

Phase II. Allocate sub-deadline and assigns proper resource according to the load
proportion of each task

We set the initial marking of token vector for second phase as M ¼ ½10. . .0�. Then
the token moves through forward matrix along the workflow topology path investi-
gating each task’s the sub-deadline and assigning cheapest VM which can guarantee
sub-deadline. Sub-deadline is ways for guarantee the entire deadline. When we allocate
sub-deadline properly, and if each task can guarantee the sub-deadline, we can achieve
successful scheduling. Therefore, we allocate sub-deadline rationally based on
remaining time (deadline D subtracted by current execution time TcðmÞ) and load rate.

sd p�ð Þf¼ rl pð Þ � ðD� Tc mð ÞÞ: ð5Þ

Then based on Application Profiling matrix, we can find cheapest VM which can
execute task in sub-deadline, and can execute task into available VM with the support
of Resource Provisioning Manager. When execution is over, token can be moved to
next step.

When there are no available resource types to guarantee sub-deadline, it may cause
deadline violation for entire workflow. Therefore, we token is not moved to next step
and should apply task division policy in phase III.

Phase III. With the cost model check whether task division policy is necessary
As mentioned before, we should determine when we have to proceed division

based on processing time and required cost. Also, we should consider the service level
violation penalty on required cost. To determine profit in one dimension we define cost
model to maximize profit while considering the cost and processing time. The profit
Model for the scheduler is represented as follows:

Pt ¼ B� Cl � Cp ð6Þ

In the formula above, Pt indicates Profit. B is budget which is supplied by user. Cl

is cost for leasing VM(s) from cloud provider which is specified in (1). Penalty cost Cp,
which is caused by SLA violation, is represented as follows:

Cp ¼ aþ b � SV ; if SV [0
0; otherwise

�
ð7Þ

SV ¼ ECT � D; if ECT � D[0
0; otherwise

�
ð8Þ

In Eqs. (7) and (8), variable SV indicates the degree of SLA violation. There are
many models of violation penalty cost, but in this paper we use simple linear violation

A Phased Workflow Scheduling Scheme with Task Division Policy 81

penalty model (7) [5]. As shown in (8), SV is described as subtraction deadline D from
estimated completion time ECT.

We estimate SLA violation SV and SV’ in a deterministic way. We define SV
Estimation Token me in order to calculate penalty cost by proceeding them. Initially,
the location of me is replicated from current execution token m. Also, each token save
temporal current execution time Ttc með Þ which is replicated from current execution
time TcðmÞ. Then, by moving each token with forward matrix, calculating the esti-
mated-sub-deadline, allocate temporal VM, cumulating the Ttc með Þ for each transition
with the method in phase II until token reach the final place, we can get the estimated
execution time Ttc með Þ in heuristic way.

Table 2. Algorithm of task division policy in workflow scheduler

82 S.-H. Kim et al.

Then with the comparison of profit between the non-division case and division case
(half division), we can determine the cost efficient decision. Therefore we should
calculate profit P for non-division case and profit P’ for division case. For calculating
profit P’ of division case, application profiling for divisible task (Table 1) will be
needed.

If P < P’, apply the half division and return to phase II. If division case not yet
guarantee the deadline, division can be occurred recursively until task is no further
divisible (critical degree equals 1). If P > P’, allocate biggest VM to transition and
return to phase II for forwarding to next step (Table 2).

4 Experimental Evaluation

4.1 Experiment Environment

The experimental environment consists of workflow designer, cloud broker, and
OpenStack Cloud Infra as shown in Fig. 2. We composed three workflow topologies
using workflow designer, and requested execution of one workflow within a certain
deadline. The task request was sent to the cloud broker, and then a cloud broker did
allocated each sub-task within the sub-deadline. The workflow management system
used in the experiment was implemented for OpenStack cloud to run each sub-task.

Three examples of workflow applications are shown in Fig. 3. Workflow type 1 (a)
has some sequentially connected split-merge pairs that have some parallel tasks.
Workflow type 2 (b) has little split-merge pairs. However, they have lots of parallel
tasks. Workflow type 3 (c) are composed of hybrid structures. We used 4 kinds of task
type in random distribution for each tasks.

4.2 Experimental Results and Discussion

We requested the execution of each workflow applications repeatedly with various
SLAs (deadlines), and investigated the actual execution time and cost. Additionally, we

Fig. 2. Experimental environment

A Phased Workflow Scheduling Scheme with Task Division Policy 83

calculated the difference between the given SLA and the actual execution time or cost
to see how well each policy guaranteed the given SLA. Therefore, we should check
whether the proposed scheme work properly so that the actual execution time follows

(a) Workflow topology 1 in serial case with 70 tasks

(b) Workflow topology 2 in parallel case with 50 tasks

(c) Workflow topology 3 in hybrid case with 70 tasks

Fig. 3. Three types of workflow topology used in experiment

(a) Measured completion time in workflow
topology 1 with scheduling schemes

(b) Measured execution cost in workflow
topology 1 with scheduling schemes

(c) Measured completion time in workflow
topology 2 with scheduling schemes

(d) Measured execution cost in workflow
topology 2 with scheduling schemes

(e) Measured completion time in workflow
topology 3 with scheduling schemes

(f) Measured execution cost in workflow
topology 3 with scheduling schemes

Fig. 4. Experimental results with scheduling schemes (PWSD and PWS) on completion time
and execution cost

84 S.-H. Kim et al.

the given deadline. Proposed scheme (PWSD) is compared with phased workflow
scheduling without division policy (PWS) [4]. Because of the limitation on amount of
cloud resources compared to the workload on each workflow instances, experiment was
performed in emulation.

Figure 4 shows the experimental results according to the scheduling scheme. (a),
(c), and (e) represent the actual execution time with different workflow types versus
increment of deadline on PWSD and PWS scheme. Dotted lines is plotted to support
comparison with the QoS (deadline) constraint. Line with circular points shows
experimental result with PWS scheme and line with square points shows experimental
result with PWSD scheme. We can find that three graphs show the similar result. When
the deadline is too low, the deadline policy cannot meet the deadline in PWS although
the broker allocates whole computing resource with large VM types. Therefore, there
are some QoS violations in low deadline requirement. In this region, request should be
rejected before it pass the admission controller. However, in case of PWSD, it guar-
antee the QoS region, which PWS can’t guarantee, with task distribution and division
policy. When the deadline is given adequately, the both scheme can schedule for
adequate VM types with assurance of the requirement and might work in same way. In
advance, (b), (d), and (f) show the execution costs of different workflow types when we
change the deadline. In PWS scheme and, larger type VM are used frequently in order
to meet deadline. Also because of violation penalty cost, the execution cost tends to be
more expensive, when the deadline is small. However, in PWSD in the same manner,
the execution cost does not increase because broker do not have to pay violation
penalty. Because we do not consider the management load (split and merge) and data
transmission delay between tasks, cost goes down with the profit from frequent task
division.

In this experiments, we can conclude that the division policy schedules workflow
with guaranteeing the deadline, while trying to use resources in efficient way. We
checked this policy works well in various types of workflow.

5 Conclusion

We propose the adaptive workflow scheduling scheme based on the colored Petri-Net
model which tries to schedule in the cheapest way while assuring the deadline. Our
model uses the phased scheduling model. Therefore, it can schedule dynamically with
low complexity. Also, we showed that our result ensures the deadline. Our work was to
distribute sub-deadline to each tasks based on its importance compared to the rest of the
workflow. We can extend this idea to distribute budgets to each tasks based on the
same importance and make user to choose the policy they want. Further work will
contain these extensions. Also, we can generalize the problem by using the utilization
concept consisting of deadline and budget.

Acknowledgments. This work was supported by the ICT R&D program of MSIP/IITP
[10038768, The Development of Supercomputing System for the Genome Analysis] and ‘The
Cross-Ministry Giga KOREA Project’ of The Ministry of Science, ICT and Future Planning,
Korea. [GK13P0100, Development of Tele-Experience Service SW Platform based on Giga
Media].

A Phased Workflow Scheduling Scheme with Task Division Policy 85

References

1. Jeong, S., Jo, Y.M., et al.: A novel model for metabolic syndrome risk quantification based on
areal similarity degree. IEEE Trans. Biomed. Engi. 61(3), 665–679 (2014)

2. Ren, Y., Kim, S.-H., et al.: A cost-efficient job scheduling algorithm in cloud resource broker
with scalable VM allocation scheme. KIPS Trans. Softw. Data Eng. 1(3), 137–148 (2012)

3. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications on
utility grids. In: First International Conference on e-Science and Grid Computing, pp. 8–147.
IEEE (2005)

4. Kim, D.-S.: Adaptive workflow scheduling scheme based on the colored petri-net model in
cloud. Master’s thesis. KAIST, Daejeon, Korea (2014)

5. Wu, L., et al.: SLA-based resource allocation for software as a service provider (SaaS) in
cloud computing environments. In: 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 195–204. IEEE (2011)

6. Bharadwaj, V., et al.: Divisible load theory: a new paradigm for load scheduling in distributed
systems. Cluster Comput. 6(1), 7–17 (2003)

7. Kelley Jr., J.E.: Critical-path planning and scheduling: mathematical basis. Oper. Res. 9(3),
296–320 (1961)

86 S.-H. Kim et al.

	A Phased Workflow Scheduling Scheme with Task Division Policy in Cloud Broker
	Abstract
	1 Introduction
	2 Workflow Scheduling in a Cloud Broker
	3 Phased Workflow Scheduling Scheme with Task Division Policy
	4 Experimental Evaluation
	4.1 Experiment Environment
	4.2 Experimental Results and Discussion

	5 Conclusion
	Acknowledgments
	References

