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Abstract Energy efficiency is always a concern in hosting
servers.When any new development is added to a host server,
the power consumption of the host server must be theoreti-
cally and empirically re-evaluated. Because of the ongoing
development trends in computing systems at the hardware,
software and middleware levels, deriving a direct mathemat-
ical model for quantifying the power consumption of a host
server is difficult. Therefore, a system identification is used to
construct the power consumption model for virtualized host-
ing servers. To date, three types of system identifications have
beenused in the literature for defining thepower consumption
model: the first-principles, the black-box and the gray-box
identification approaches. To the best of our knowledge, the
majority of these approaches are apparently used tomodel the
power consumption in a single-input single-output (SISO)
system model, in which a hardware component is reconfig-
ured to meet the power budget target. In this paper, to accom-
modate the ongoing development trends in computing sys-
tems, we propose a multi-input single-output (MISO) model
for modeling the power consumption of virtualized hosting
servers. We use the black-box system identification method,
and we utilize the Auto-Regressive eXogenous (ARX)math-
ematical model to construct the MISO power model. We
compare ourMISOpowermodel with the SISO powermodel
that is used in existing state-of-the-art works. Empirically,
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1 Introduction

The variety of available tuning configuration settings in virtu-
alized hosting servers has enabled a broad range of modeling
and design aspects, such as power and performance model-
ing. In a virtualized hosting server (hereafter called a host
server), the server has the capability to dynamically (on-the-
fly) reconfigure its CPU frequency [26], memory frequency
[15,33], network bandwidth [11], and storage disks [20,21].
These configurations are called (in this paper) a physical
configuration capability. On the other hand, virtualization
technology has enabled host servers to host virtual machines
(hereafter called guest servers) and to share their physical
hardware with these guest servers. Examples of hardware
sharing between host and guest servers include a number of
CPU cores being assigned to the guest server (called vCPU),
the CPU time share (or the percentage of time that a guest
server is allowed to use the physical hardware), the amount of
memory, and network bandwidth, among others. These con-
figurations are called (in this paper) virtual configurations.

These configuration capabilities (physical and virtual)
are primarily used as controller inputs for different pur-
poses in virtualized host servers. For example, they are
used in performance tuning [1,14,26], thermal management
[8,9,32,33] and revenue maximization [36,60]. Apparently,
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Fig. 1 A host server with two feedback controllers with two different
purposes: controller C1 manages the power consumption of the host
server, and controller C2manages the performances of the guest servers

power consumption is implicitly considered within the scope
of these purposes, and the physical configurations are used
only to control the power consumption. For example, Fig.
1 illustrates how the power consumption in a host server is
commonly modeled as a single-input single-output (SISO)
system to control the power budget.Other configuration para-
meters are used for other controlling purposes. For example,
CPU frequency scaling is used to control the power con-
sumption of a cluster of host servers, as in [7,13,29,38,50].
However, we argue that there are other configurations in vir-
tualized hosting servers that have an impact on the power con-
sumed by these servers. For example, the performancemodel
of a system is controlled using the server’s CPU time share,
and the power consumption is controlled using the CPU fre-
quency scale in two SISO models. These two models are
periodically checked in a hybrid hierarchymodel [42,51,53].
The power model is either located in the inner [42] or outer
[53] part of the overall control design of a system. The impact
of the location of the SISO power model in the control design
is shown in Fig. 2. For example, if the power model is located
in the inner part of the control design of a system, then the
power consumption of a host server would be as shown in
Fig. 2a. Conversely, if the power model is located in the outer
side of the control design, then the power consumptionwould
be impacted by other controllers (e.g., the performance con-
troller), as shown in Fig. 2b.

In the literature, the power consumption of host servers is
investigated using the SISOmodel. In particular, the changes
in the CPU frequency (with the help of dynamic voltage and
frequency scaling) in a host server will reflect the changes
in power consumption in that host server. Nevertheless, in
virtualized environments, a host server will share its CPU
timing among guest servers (VMs) that reside in it. This CPU
time share is managed by a virtualized manager (such as xen
[57] or kvm [28]). For example, in xen, the capability (cap)
is the interface for controlling and managing the CPU time
share. A cap of 100 for a guest server means that if the guest
server is configured with one CPU core, then it has 100% of
the time of one CPU core; if the guest server is configured

with two CPU cores, then it has 50% of the time of the two
CPU cores. Similarly, a cap of 150 for a guest server means
that it has 75% of the time of two CPU cores or 50% of the
time of three CPU cores.

The primary objective in this paper is to estimate a
multiple-input single-output (MISO) power consumption
model for host servers that can reduce the power consumption
settling time. Rather than using multiple SISO models run-
ning in a hybrid hierarchy, inwhich some of these SISOmod-
els will interact with power changes, a single MISO model
will promptly respond to any required changes to the power
settings. This power model will be vital if renewable energy
sources (e.g., wind turbines or solar photovoltaic panels) are
used to supply data centers, such as in a parasol data center
[19]. The power supplied in this case comes from an inter-
mittent supplier that has a high probability of power leakages
or power outages. Therefore, any host server in a green data
centermust have amodel that helps to promptly adapt to such
changes in supplied power.

In this paper, we investigate the modeling of power con-
sumption in host servers and the precise impact of multiple
and concurrent configuration changes on power consump-
tion. We model the power consumption in host servers using
the MISO model. To the best of our knowledge, this study is
a pioneering step that changes the modeling of power con-
sumption from coordinating multiple SISO models to a sin-
gle MISO power consumption model in virtualized hosting
servers. The key contributions of this paper are as follows:

– We identify the factors that significantly contribute to the
power consumption of a server. We define the contrib-
utors to power consumption in host servers as physical
configurations, such as CPU frequency, and as virtual
configurations, such as the CPU time share allocated for
guest servers (virtual machine).

– We use the black-box system identification approach to
estimate the power consumption model. We essentially
estimate two SISO models (one model for the physical
configuration and one model for the virtual configura-
tion) and one MISO model that combines both physi-
cal and virtual configurations. We compare the estimated
models (SISO and MISO models) in terms of how well
they reproduce the actual measured power consumption
of host servers.

– We further investigate the model complexity, in partic-
ular, the model orders and input delays. In addition, we
determine the model sampling time that is adequate for
system control.

– Empirically,we show that theMISOmodel (with its com-
plexity) is superior to the SISO models used in existing
works. We believe that the MISO model could simplify
the hybrid hierarchy control design in some of the exist-
ing works, such as [27,51,53].
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Fig. 2 Scenarios for system configurations and their effects on the power consumption of the host server. The top graph is the power consumed
by the host server (Ws), and the two bottom graphs are the CPU frequency (GHz) and CPU time share (%) varied over a period of time

– We review the characteristics of our MISO power model
in terms of stability and oscillatory.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss themethod thatwe use tomodel the power
consumption in detail. In Sect. 4, we discuss the results of our
work. The evaluations of our proposed model (including the
limitations and future works) are presented in the discussion
section, Sect. 5. Then, reviews on relatedworks are presented
in Sect. 6. Finally, conclusions are presented in Sect. 7.

2 Methods

Constructing a model to facilitate control over power con-
sumption in host servers is one of the fundamental require-
ments for constructing an automated system. According to
control theory, the construction of an automated system first
requires studying and modeling the system, followed by
investigating the possible control methods for automation. In
this paper, we focus on studying the modeling of power con-
sumption in virtualized hosting servers. Studying the system
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involves (1) defining the inputs and outputs of the system and
(2) identifying the systemmodel. For the latter step (identify-
ing the system), the methodology used to estimate the model
is of considerable importance because it helps to identify the
model complexity (model order) and to define the adequate
sampling time for the proposed model (in this paper, we aim
to model power consumption).

2.1 System inputs and outputs

Any system has inputs and outputs, which are the core ele-
ments that define the complexity of the system.For instance, a
systemwith a single input and single output (SISO) is simply
comparable to multi-input multi-output (MIMO) systems.
Defining the relationship or the influence of the inputs on
the behavior of the system outputs is essential for accurate
modeling. In host servers, the inputs and outputs of a sys-
tem are the system configurations (inputs) and system per-
formances (outputs). System configurations (inputs) in host
servers have different forms, such as physical and virtual con-
figurations. The physical configuration of the hardware com-
ponents inside host servers is an example of a physical config-
uration. CPU andmemory frequency scaling (using dynamic
voltage and frequency scaling DVFS) [26] are examples of
this physical configuration form. On the other hand, the con-
figuration of the guest servers (virtual machine), such as the
allocated CPU cores and amount of memory for that guest
server, are virtual configurations. The priority and the time
sharing for using the physical components of the host servers
are also virtual configurations.

In this paper, to identify the powermodel, we consider two
inputs or system configurations (inputs): (1) the changes in
CPU frequency (denoted�f ) of the host server (as a physical
configuration) and (2) the changes in the guest server’s time
share (denoted�c) to use the physical CPU of the host server
(as a virtual configuration). However, these two configura-
tions are not the only configurations that affect power con-
sumption. The configuration and the allocation of memory,
storage andnetworkbandwidth for the guest server also affect
power consumption, butwe selected theCPU frequency scale
and CPU time share because they are strongly correlated to
each otherwith respect to both performance tuning andpower
consumption.

System performances (outputs) in host servers could
include availability, responsiveness, efficiency and power
budgeting. With recent calls to reduce the power consump-
tion in information and communication technology (ICT),
we consider the power consumption as the system output.
The aforementioned system configurations (inputs) have an
impact on the power consumption behavior. Figure 2a and b
show the effects of changes in the CPU frequency and time
share, respectively. In fact, the combination of the two sys-
tem configuration changes has effects with different patterns

on power consumption; see Fig. 2c. In this paper, we focused
our modulation on the power consumption.

A virtualized CPU has predefined values for the frequency
levels; these levels are defined by themanufacturer’s vendors
to operate the CPU processors according to different power
budget plans. To the best of our knowledge, there is no way
to operate the CPU processor on a frequency level that does
not exist among these frequency levels. However, Lefurgy
et al. [31] proposed a power-capping algorithm to modu-
late any middle CPU frequency value by supplying a series
of the manufactured frequency levels at a tiny time scale (a
fraction of the sampling time T s), and the modulator was
developed in [51,53]. In addition, Raghavendra et al. [42]
suggested locating the CPU frequency controller to the most
inner level to control the power consumed by promptly con-
trolling the CPU frequency. In this paper, we did not follow
this algorithm to produce a wide range of CPU frequencies;
rather, we used the available manufactured frequency lev-
els to identify the system. The reason for using the available
manufactured frequency is that power capping adds an addi-
tional microcontroller to modulate the CPU frequency, and
we must consider its performance impact on identifying the
MISO model.

The configuration of CPU time share follows a ratio-style
technique, which allocates a percentage of the CPU time
to a guest server. For example, if a host server has a dual-
core processor, then this host server has 200% CPU time.
Furthermore, if a guest server (residing on that host server)
is going to work on half of a CPU core or on one full CPU
core, then the CPU time share for that guest server would be
50 or 100%, respectively.

2.2 System identification approach

The major contribution of this paper is the system identifi-
cation; therefore, this subsection focuses on explaining the
estimation of the mathematical model from the system iden-
tification. To construct a mathematical model for computing
systems, we have to follow either a first-principles or a black-
box identification approach. When the computing system is
described through basic mathematical equations, the con-
struction of the systemmodel is called a first-principles iden-
tification approach. For example, starting from basic queuing
theory equations to identify the performancemodel in a com-
puting system is a first-principles identification approach. In
contrast, supplying a series of control input signals to the
computing system and collecting the outputs followed by
analyzing and correlating the changes in the control inputs
and outputs to estimate a system model is called a black-box
identification approach. Both approaches have been used to
model computing systems, and they have been demonstrated
to be applicable for modeling and further controlling diverse
aspects in computing systems.
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For example, the authors in [44,47] suggested using the
first-principles approach to identify the performance model.
However, the authors in [6,27,42,53] suggested using the
black-box approach to identify the power consumptionmodel
as a SISO model. Furthermore, there is another approach,
called the gray-box approach, that combines the two afore-
mentioned approaches. The gray-box approach depends on
previously defined mathematical equations and uses the
black-box approach to develop better estimated systemmod-
els. Chen et al. [11–14] successfully used the gray-box
approach to model the performance of host servers. Chen
et al. relied on the queuing theory equations to define the
response time in terms of processing demand and utilization.
Then, they defined a basis function to correlate the server’s
CPU frequency with both the workload and utilization of the
server. Subsequently, they used a training signal to practically
estimate the impact of CPU frequency on the response time
using the black-box approach. However, regarding the power
consumedby a server, there are no previously defined and sta-
ble mathematical equations that describe a power consump-
tion model for servers. Therefore, the black-box approach is
preferable in this case.

In this paper, we used the black-box approach to identify
the power consumption model for host servers as a (MISO
model. The physical and virtual configurations, i.e., the CPU
frequency scaling and CPU time share as discussed in the
previous Sect. 2.1, are the control input signals used in the
black-box system identification approach. Thus, we com-
pare our proposed model with those that followed the black-
box system identification approach [6,27,42,53]. Other pro-
posed models that followed the first-principles or the gray-
box system identification approach are not considered in this
paper because there are no stable or accurate mathemati-
cal equations available for defining the power consumed in
servers.

2.2.1 Model type

In system identification [35], there are several mathematical
models available for defining a mathematical equation, such
asAuto-Regressive (AR),Auto-RegressiveMoving-Average
(ARMAX), Output-Error (OE) and Box-Jenkins (BJ). For
example, the OE model was used for thermal modeling in
multi-core processors [10]. The ARX model was used to
model the web server response time [53] and the CPU and
memory utilization in a web server [16] [17].We selected the
ARX model as the most appropriate model because (1) eval-
uating its difference equations is simple and (2) this model is
able to estimate MISO systems. The simplicity of the ARX
model is primarily due to its difference equations, which are
easy to interpret and control. The ARX model follows the
difference equations as in Eq. 1,

y(t + 1) =
na∑

i=0

ai · y(t − i) +
nb∑

i=0

bi · u(t − i), (1)

where y(t + 1) is the estimated next output, y(t), y(t −
1), . . . , y(t − na) are the past na outputs, and u(t), u(t −
1), . . . , u(t − nb) are the past nb control inputs. The coeffi-
cients or system parameters a0, . . . , ai and b0, . . . , bi are the
model parameters that are estimated using the Least Squares
Regression method [35] (a computer software such as MAT-
LAB [34] can estimate these parameters). The details of how
to estimate these parameters are available in control theory
textbooks, such as [35]; however, we describe the estima-
tion process to clarify the estimation of these parameters. To
generate an ARX equation as in Eq. 1, we first collect real
data regarding the system that is being modeled, which in
this case is power modeling for a server. The data are sorted
in a time series, which include the input configuration (u(t))
and the measured outputs (y(t)) at time t . Next, we attempt
to predict the future output (e.g., ŷ(t + 1)) from the previous
known data, i.e., y(t) . . . y(0) and u(t) . . . u(0), asmentioned
in Eq. 1. Then, we examine the prediction error or the resid-
ual e(t+1) of the (t+1) output between themeasured output
with the ARX prediction as follows:

e(t + 1) = y(t + 1) − ŷ(t + 1). (2)

Using the Least Squaresmethod, we want to minimize the
squared errors by tuning the parameters in the ARX Eq. 1,
that is, a0, . . . , ai and b0, . . . , bi . Mathematically, we want
to minimize the following Eq. 3

f (a0, . . . , an, b0, . . . , bm) =
K∑

t=0

e2(t + 1)

=
K∑

t=0

[y(t + 1) − ŷ(t + 1)]2 (3)

Precisely,

min
K∑

t=0

[y(t + 1) −
na∑

i=0

ai · y(t − i) −
nb∑

i=0

bi · u(t − i)]2,

(4)

where K is the size of the time series in the experiment.
The values of the original ARX model (Eq. 1) can be deter-
mined by taking the partial derivatives of the aboveEq. 4with
respect to each corresponding parameter and setting them to
zero, i.e.,

∂

∂a0
, . . . ,

∂

∂ana
,

∂

∂b0
, . . . ,

∂

∂bnb
. (5)

The ARX model presented in the system model Eq. 1 is a
SISO system model, that is, it contains a single input u and
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a single output y. If the system requires a certain number
(e.g., N ) of previous output states, in particular, y(t− i), and
a certain number (e.g., M) of previously supplied control
inputs, then the complexity of the ARX model would be
represented as an N th-order systemmodelwith anM th-order
input delay. The complexity of the order is proportional to
the model order, i.e., the N th order. In our proposed model
(MISO), we empirically observed that the M th-order input
delay has a very clear impact on the system estimation and
validation.

2.2.2 SISO model (physical configuration)

The power consumption is modeled using the SISO model,
in which the CPU frequency is considered to be a tuning
controller. The changes in power consumption (�p(t + 1)
and �p(t − i)) are the system outputs (y(t + 1) and y(t − i)
as in Eq. 1), and the changes in CPU frequency (� f (t −
i)) are the control input (u(t − i) as in Eq. 1). Because the
controls of computing systems are dynamic, the changes in
both power and CPU frequency were calculated by 1) setting
operating points for both power ( p̃) and CPU frequency ( f̃ )
and by 2) evaluating the differences between the measured
and operating values and using them in estimating the ARX
model, i.e., �p = p̃ − p and � f = f̃ − f . Consequently,
the ARX difference equation used is as follows 6:

�p(t + 1) =
na∑

i=0

ai · �p(t − i) +
nb∑

i=0

bi · � f (t − i) (6)

2.2.3 SISO model (virtual configuration)

In the literature, the CPU time share is commonly used to
control the performance of the guest server (virtual machine)
[6,44,47]. Additionally, because we have previously defined
that CPU time share is a virtual configuration, we empiri-
cally demonstrate the impact of this type of configuration on
power consumption, as shown in Fig. 2b. Although virtual
configurations, namely, the CPU time share (xen cap or kvm
cpulimit), are used to control the guest (virtual) server’s per-
formance, we treat this input control configuration as a power
controller as the CPU frequency configuration. Thus, we
applied the same methodology of the SISO power consump-
tion model with CPU frequency control input (� f (t − i))
to obtain another SISO model with CPU time share control
input (�c(t − i)). We set the operating point for CPU time
share (c̃) and evaluated the differences between themeasured
(c) and operating value (c̃) and used them in estimating the
ARX model as in previous SISO models, i.e., �c = c̃ − c.
The obtained ARX model is represented as the following
Eq. 7.

�p(t + 1) =
na∑

i=0

ai · �p(t − i) +
nb∑

i=0

bi · �c(t − i) (7)

2.2.4 MISO model

Intuitively, each control input has an impact on the power
consumption behavior; therefore, the power consumption
could be controlled by setting appropriate gains to both con-
trol inputs (configurations). In this paper, we propose a power
model with two concurrent control inputs, i.e., the physical
and virtual configurations described in Sect. 2.1. The control
inputs are the rate of change in CPU frequency and the rate
of change in CPU time share, and they are denoted as (� f )
and (�c), respectively. Then, we followed a similar proce-
dure in system identification by setting an operating point for
all model participants (power, CPU frequency and CPU time
share), and then we evaluated the differences between the
measured and operating values and used them in the ARX
model estimation. The expected resulting ARXmodel is rep-
resented by the following Eq. 8.

�p(t + 1) =
na∑

i=0

ai · �p(t − i) +
nbf∑

i=0

b f i · � f (t − i)

+
nbc∑

i=0

bci · �c(t − i), (8)

where we have altered the notation for the control input coef-
ficients (bi ) as follows. In Eq. (8), b f i are the coefficients for
the CPU frequency configuration (� f (t− i)), and bci are the
coefficients for the CPU time share configuration (�c(t−i)).

2.3 Model order

The complexity of the systemmodel is vital in control design.
The complexity of the model is determined based on various
aspects, and one of those aspects is the model order. In this
paper, we focus on identifying themodel order that could best
capture the real power consumption behavior in host servers.
The model order is computed according to the order of the
output (or the number na of past outputs) in the ARX model
presented in Eq. 1.

In addition, during our experiment, we observed that the
order of the input delay has an observable impact on the accu-
racy of the model estimation. Therefore, we include in our
experiment the variation in input delay (or the number nb of
past control inputs) for both physical and virtual configura-
tion types as they appeared in the ARXmodels (Eqs. 6, 7 and
8).

2.4 MISO model properties

Any estimated model should be capable of predicting the
dynamic behavior of a system, and our MISO model should
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have this prediction capability. Let us recall Eq. 8 and con-
sider the 1st-order model and the 2nd-order input delay as
the following Eq. 9

�p(k) = a · �p(k − 1) + b f 1 · � f (k − 1)

+ b f 2 · � f (k − 2) + bc1 · �c(k − 1)

+ bc2 · �c(k − 2). (9)

The solution for this system Eq. 9 is the following Eq. 10,
and the details of the derivation are explained in Appendix 1.

�p(k) = ak−1 · �p(1) +
k−1∑

i=1

ak−1−i · b f 1 · � f (i)

+
k−1∑

i=1

ak−1−i · b f 2 · � f (i − 1) +
k−1∑

i=1

ak−1−i · bc1 · �c(i)

+
k−1∑

i=1

ak−1−i · bc2 · �c(i − 1), (10)

where k is greater than 1 (k > 1), and a, b f 1, b f 2, bc1, and
bc2 are estimated parameters. From this solution, it is clear
that parameter a has a considerable impact on determining
the power consumption of a host server. This a parameter is
the pole of the model, as explained earlier. From this pole
a, we can determine several properties of our MISO power
model, namely, the stability, responsiveness, and oscillatory
of the system [24].

Stability: The system model is stable if |a| < 1. If the pole
(a) of the MISO model is greater than one and k approaches
infinity, then theMISOmodel output (�p(k)) becomes larger
without a limiting bound.

Oscillatory: The system model is oscillatory if a is negative,
that is , if a < 0, then the MISO model output (�p) will be
oscillatory. This is due to the term ak . If k is odd, then the
output will be negative, and if k is even, then the output will
be positive.

2.5 Sample time selection

Defining the sampling time is important for the control design
because it affects the performance of the controller that is
used to control the system. The sampling time determines
the length of time of the averaged system outputs. A short
sampling time enables the controller to quickly react to any
changes in the system; however, it increases themeasurement
overhead of the controller. In contrast, a long sampling time
will avoid randomfluctuations in the system by averaging out
the system’s stochasticity; however, it will slow the response
of the system’s controller. This is a critical task when we
need to monitor many variables, such as in the case of [18].

To select the best sampling time, we estimate the ARX
model of power consumption over different lengths of sam-

pling time and monitor the changes in the model’s pole. The
pole of the system, particularly ai in the ARXmodel (Eq. 8),
is changing due to the changes in the sampling time period.
Because theARXmodels estimated in this paper are discrete-
time models, we have to convert the models to continuous-
time models and observe the behavior of the pole. This con-
version is important because the model’s pole is more likely
constant in continuous-time models [35]. In this paper, we
focus our sampling time selection to our proposed MISO;
therefore, we run our experiment over 9000s, and we collect
power consumption outputs over different sampling times
(T s): 2, 3, 5, 10, 15, 20, and 30s. Then, we estimate seven
ARX MISO models to represent different sampling time
models. The poles of the ARX MISO models are important.
Hence, the estimated ARX MISO models are discrete-time
models, and we convert them into continuous-time models.
Next, we plot the pole of each model and find the points
where the pole becomes fairly constant.

3 Experiment

3.1 Testbed

We installed xen version 4.1 [57] on a physical machine
(host server) with the following hardware configuration: the
processor is an Intel Core 2DuoE6750@2.66GHz processor
with two cores; the processor supports three levels of CPU
frequencies, namely, 2.66, 2.33 and 2 GHz; the host server
has 4 GB of RAM; it has 80 GB of hard disk space; and it
has a gigabyte Ethernet card. We configured three VMs on
top of the server. Each VM has 2 cores (as the server has 2
physical cores), 256 MB of virtual RAM, and a virtual net-
work connection. The CPU time share (or CPU credit) are
divided among them such that the total CPU time share must
be equal to the designated CPU time share for our experi-
ment. For example, when a server has a CPU time share of
130, then two VMswill be configured with a CPU time share
of 43 and one VM with a CPU time share 44.

3.2 Tools

We used the built-in xen application programmable inter-
faces (API) to control the host server. In particular, we con-
trolled the server CPU frequency using the xenpm command
[56] and controlled the server CPU time share using the
sched-credit command [58]. Note that the middleware (vir-
tual library) has an impact on scheduling the CPU time share
among guests servers. In our work, we used the fix credit (or
non-work conserving scheduler) as explained in [22], which
guarantees that the guest server has its assigned CPU time
share even when there are other running guest servers hosted
by the same physical server. We used a power meter sensor
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Fig. 3 The control input signals used for power modeling. We used a
step input signal for CPU frequency and a sine wave input signal for
CPU time share. Both input signals were used together to identify the

MISO power model, and the coverage of the input space is the most
right sub-figure. Notice the vertical line shape of the scattered input
space, which is due to the step signal used for the CPU frequency

from Yoctopuce [59] attached to the power supply (power
cable) connected to the server to monitor the power con-
sumed by the server.

3.3 Workload

In our experiment, we focused on running all virtual
machines (VMs) at their maximum CPU utilization while
keeping other components, such as memory and network,
at minimum utilization. In other words, all VMs are run-
ning a computation- or CPU-intensive workload applica-
tion. There are several workload tools that can perform a
computation-intensive workload; however, we created our
own computation-intensive application. The application is a
shell script that computes the value of (π ), which is used to
calculate the area of a circle, using the Monte Carlo Algo-
rithm [37]. Similar to our previous works [2–4], the script is
launched and continuously runs on all VMs during the exper-
iment. In this way, we ensure that the utilization of all VMs’
virtual CPUs (vCPUs) are at almost 100% utilization, and
consequently, the portion of the CPU time share designated
according to the implementation is fully utilized.

3.4 Implementation

The control input signals are an important component of the
system identification, and defining the shape of the signal
is vital in the black-box system identification approach. On
the one hand, we have two control input variables, namely,
the CPU frequency and the CPU time share, and their rates
of change are labeled in Eqs. 6, 7 and 8 as � f and �c,
respectively. Both have a different range of values and steps.
Therefore, we form two different series of control inputs that
match the characteristics of each of them. Further explana-

tion is provided in the following paragraphs. On the other
hand, we have one output variable, which is the power con-
sumption. The computing system is known to be a nonlinear
system, and to generate a linear model for a nonlinear model,
we should define an operating point in which the dynamic
behavior of the system is linear. The power consumption of
our server is operating linearly at the point of 138 watts sec-
ond, so we set the operating point of the power consumption
( p̃) to be 138Ws. It is notmandatory that 138Ws be the opti-
mum operating point; different servers could have different
operating points.

The available CPU frequencies of our host server are three
levels, and they are converted to ratio levels with respect to
the maximum frequency level (2.66 GHz). Consequently, we
have three CPU frequency ratios: 1 (2.66 GHz), 0.87 (2.33
GHz) and 0.74 (2 GHz). We set the operating point of the
CPU frequency ratio ( f̃ ) to be 1, i.e., the max frequency
2.66 GHz available. We use a step signal to cover the CPU
frequency range, as shown in Fig. 3a.We start from the mini-
mum frequency ratio 0.74, thenwe step up the frequency ratio
to the next levels, particularly 0.87 and 1, and then we step it
down to the minimum level. The entire signal has a duration
of 9,000s, which is divided into five epochs as follows. The
first epoch is from 0 to 1,500s, the second epoch is from
1,500 to 3,000s, the third epoch is from 3,000 to 6,000s, the
fourth epoch is 6,000–7,500s, and the fifth and final epoch is
from 7500 to 9000 seconds. At the first and last epochs, the
CPU frequency ratio is set to 0.74 (or 2 GHz). At the second
and fourth epochs, the CPU frequency ratio is set to 0.87 (or
2.33 GHz). At the middle epoch, the CPU frequency ratio
is set to 1 (or 2.66 GHz). We designate each epoch to have
a long duration because we would like to exploit the other
control input range, the CPU time share, at each epoch of
CPU frequency setting.
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Because our host server’s processor has two cores, the
CPU time share has an input range from 1 to 200. However,
we are interested in the rate of change in this configuration
control input; therefore, we convert the CPU time share to a
ratio between 1 to 100, and we set the operating point of the
CPU time-share ratio (c̃) to be 0.75 (or 150 of 200) of theCPU
time share. For the CPU time share, we use a sinewave signal
to cover most of its range, as shown in Fig. 3b. The mean of
the sine wave is 0.65 (or 130 of 200) of the CPU time share,
with an amplitude of (197 of 200) of the CPU time share and
a period of 720 seconds. The entire CPU time share input
signal has a duration of 9000 seconds to match the duration
of the other control signal (the CPU frequency signal).

The period of the sine wave signal is shorter than the dura-
tion of the epochs in the CPU frequency step signal, which
helps us achieve a better coverage of the input space between
the two control inputs; see Fig. 3c. In Fig. 3c, the input space
is shaped as three vertical lines. These three lines are due to
the step signals used for the CPU frequency control input.
This is the best coverage we can obtain using the manufac-
tured CPU frequency levels available. However, if we would
like to have a scattered coverage, then we may use the pro-
posed modulator in [31], but a special consideration has to
be given to the impacts of the system identifications and esti-
mation.

3.5 Model estimation

We applied the aforementioned control signals in three types
of combinations, as shown in Fig. 2. The combinations are
CPU frequency variation, CPU time share variation, and both
variations. These combinations are used to estimate the three
types of system models discussed in Sects. 2.2.2 (physi-
cal configuration SISO model), 2.2.3 (virtual configuration
SISOmodel) and 2.2.4 (MISOmodel), respectively. Afterwe
performed these three combinations of experiments and col-
lected the power consumption over different sampling times
(T s),weused a commercial software (aSystem Identification
Toolbox available inMATLAB [34]) to estimate the parame-
ters (a, b f 1, b f 2, bc1 and bc2) using theLeast Squares Regres-
sion for each ARX power consumption model presented in
the ARX model’s Eqs. 6, 7 and 8.

4 Results

4.1 Power consumption modeling

The power consumption models are estimated as follows.
Two 1st-order SISO models with a 1st-order input delay
(CPU frequency and time share) and one 1st-order MISO
model with a 1st-order input delay. Their ARXmodel’s equa-
tions are as follows. The estimated 1st-order SISO power

model with a 1st-order physical configuration input delay is
presented in Eq. 11.

�p(t + 1) = 0.8014 · �p(t) + 10.58 · � f (t) (11)

The estimated 1st-order SISO power model with a 1st-order
virtual configuration input delay is presented in Eq. 12.

�p(t + 1) = 0.276 · �p(t) + 29.37 · �c(t) (12)

Finally, the estimated 1st-order MISO power model with a
1st-order configuration input delay is presented in Eq. 13.

�p(t + 1) = 0.8334 · �p(t) + 8.031 · � f (t)

+ 5.478 · �c(t) (13)

These models are used to predict the power consumption
(output) of the host server and compare the predicted outputs
with the actual measured data. Figure 4 (top row) shows the
linear regression fits for each estimated model.

We also estimated the other higher-ordermodels and input
delays for all of the aforementioned model types. In this
paper, we present only the 1st-order model with a 2nd-order
input delay because it has the most appropriate linear regres-
sion fit (R2). See the results of model orders in Sect. 4.2.

The estimated 1st-order SISO power model with a 2nd-
order input delay (physical configuration) is presented in
Eq. 14.

�p(t + 1) = 0.8682 · �p(t) + 61.86 · � f (t)

−54.86 · � f (t − 1) (14)

The estimated 1st-order SISO power model with a 2nd-order
input delay (virtual configuration) is presented in Eq. 15.

�p(t + 1) = 0.263 · �p(t) + 28.57 · �c(t)

+1.332 · �c(t − 1) (15)

Finally, the estimated 1st-order MISO power model with a
2nd-order input delay is presented in Eq. 16.

�p(t + 1) = 0.9425 · �p(t) + 51.75 · � f (t)

−48.98 · � f (t − 1) + 29.52 · �c(t)

−27.58 · �c(t − 1) (16)

These models are used to predict the power consumption
(output) of the host server and compare the predicted outputs
with the actual measured data. Figure 4 (bottom row) shows
the fitting of each estimated model.

4.2 Model order selection

In the experiment, we investigated the ARX MISO model
order. We fixed the sample time (T s) and ran the experiment
for 9000 seconds. After we collected the input and output
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Fig. 4 The linear regression fits (R2) for all estimated power models. The line indicates the best fit between the actual and predicted values for the
power consumed (in Ws)

data, we estimated different model orders for our power con-
sumption (MISO) model, and we also estimated different
orders for the input delay. We reproduced the power con-
sumption using all of the estimated MISO models, and we
calculated their linear regression fits with the original data;
Fig. 5 shows these linear regression fits. In the figure (Fig. 5),
the x-axis represents the MISO model orders (from 1st to
4th), and the y-axis is the linear regression fits. If the regres-
sion fit is high, then the model is good. In the figure, there
are four lines that represent the MISO input delay order, and
they are varied (horizontally) with the MISO model order.
From the figure, we can classify two groups of models: the
improvable models and the non-improvable models.

The improvable models are the MISO models with a 1st-
order input delay. Thismodel has theworst fit among allmod-
els (R2 = 0.8232); however, its regression fit improves when
we consider higher-order models; that is, if we fix the input
delay order to 1st-order and we increase the MISO model
order to 2nd-order or higher, then the model fit improves.
We increase the model order until we reach the 4th-order,
and we achieve a 7% improvement in the regression fit

Fig. 5 The linear regression fit (R2) for the MISO model. The x-axis
shows the MISO order model, and the lines represent the order of the
input delay. It is clear that a 1st-order MISO model with a 2nd-order
input delay is sufficient for estimating the power model, and higher-
order models have very low variation compared to the selected model

(R2 = 0.8870). On the other hand, the non-improvable
models are the MISO models with a 2nd-order and higher
input delay. All models in this group have almost similar
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Fig. 6 The pole of the MISO system was plotted versus the sampling
time to define the possible sampling time

linear regression fits (R2 = 0.9272) across all MISO mod-
els’ orders. As we discussed previously, if the model order is
small, then the system model is easy to control. Therefore,
the MISO model that is suitable for the power consumption
in the host server is the 1st-order ARX MISO model with a
2nd-order input delay.

4.3 Pole and sampling time

In this subsection, we present the sampling time (T s) study
for the 1st MISO model with a 2nd-order input delay (as
discussed in the previous Sect. 4.2). According to the experi-
ment, Fig. 6 shows two sub-figures that illustrate the variation
of the pole on both discrete-time (Fig. 6a) and continuous-
time (Fig. 6b) models. We are interested in the pole behavior
in the continuous-timemodel. From the point where the pole
(in continuous-time models) starts to converge, we infer the
best sampling time for the model. Therefore, in Fig. 6b, we
can infer that the point where the pole start to converge is at
10 seconds, which reveals that the MISO model’s sampling
time (T s) is 10 seconds.

5 Discussion

In this section, we evaluate our proposedMISO power model
from two different perspectives. First, we compare ourMISO

Fig. 7 The validation of a 1st-order SISO model with a 2nd-order
input delay, where the control input is the physical configuration (CPU
frequency scaling). This SISO model has not captured the behavior of
the power consumption of virtualized hosting servers, and it did not
accurately reproduce the output data

power model with the SISO power models discussed in Sect.
2. Second,we evaluate the characteristics of ourMISOpower
model in terms of stability and oscillatory behavior.

We defined a testing control input sequence to address the
scenario of varying both the physical and virtual configura-
tions during normal operation. The control input sequence is
designed to act as a normal situation in which a host server
could be configured at any time. The control sequence is
shown in the two bottom sub-figures in Fig. 7.We applied the
control input sequence to our host server, and we observed
the power consumption during variations in the configura-
tion.We supplied the same control input sequence to all three
power consumption models estimated previously, namely,
the SISOmodel with CPU frequency scaling as a single con-
trol input, the SISO model with varying CPU time share as a
single control input, and the MISO model with both control
inputs. All of these models have the samemodel orders, typi-
cally a 1st-orderARXmodelwith a 2nd-order input delay.We
compared the power consumption estimated by each model
with the actual measured power consumption, as shown in
Fig. 7 (SISOmodel with CPU frequency scaling only), Fig. 8
(SISO model with CPU time share only) and Fig. 9 (MISO
model). Furthermore, to confirm the advantage of the 1st-
orderMISOmodel with a 2nd-order input delay, we supplied
the same control input sequence to the estimated 1st-order
MISO model with a 1st-order input delay. The power con-
sumption is reported in Fig. 10.

For the SISO models, the power consumption was poorly
estimated (see Figs. 7, 8). For example, in the SISO power
model with the physical configuration (CPU frequency scal-
ing control), the estimated power consumption was far from
the true power measurements, and the linear regression fit
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Fig. 8 The validation of a 1st-order SISO model with a 2nd-order
input delay, where the control input is the virtual configuration (CPU
time share). This SISO model has not captured the behavior of the
power consumption of virtualized hosting servers. It did not accurately
reproduce the output data

Fig. 9 The validation of a 1st-order MISO model with a 2nd-order
input delay. This MISO model has exceptionally captured the behavior
of the power consumption in virtualized hosting servers

(R2) of the model was 0.3388. This result is due to the SISO
model only considering the variation in one control input
variable (CPU frequency scale) and ignoring the other poten-
tial variable, which is theCPU time share. Similarly, the other
SISOpowermodelswith the virtual configuration (CPU time
share control) estimated the power consumption with limited
(but not acceptable) accuracy, and its fit (R2) was 0.8505. For
the same reason, this SISO model considers only the CPU
time share variable and ignores the other critical power vari-
able, which is the CPU frequency scale.

On the other hand, our proposed MISO power model (the
1st-order ARX MISO model with a 2nd-order input delay)
was able to estimate and reproduce the power consumption
with a very tiny variation from the measured data. Our model

Fig. 10 The validation of a 1st-order MISO model with a 1st-order
input delay. Although thisMISOmodel has captured the behavior of the
power consumption of virtualized hosting servers, it did not accurately
reproduce the output data

estimation was fit to the original measurements with a R2

of 0.9886. This good estimation is a result of the benefits of
havingmultiple inputs in the black-box system identification,
which considers multiple variables in the estimated output.
The high resolution (R2 = 0.9886) in the estimation is a
result of the 2nd-order input delay. To confirm the advantage
of having a 2nd-order input delay in the model, we used the
1st-order ARX MISO power model with a 1st-order input
delay, and we fitted the estimated power consumption with
the original measurements. As expected, the estimated data
were fairly consistent with the actual measured values; how-
ever, the model fit the measured data with a R2 of 0.8888.
This is a very low fitting ratio compared to our 1st-order
MISO model with a 2nd-order input delay. Therefore, we
favor the model with a 2nd-order input delay because of its
high-resolution estimation. As a final observation, although
the 1st-order MISO model with a 1st-order input delay pro-
vided a fair estimation of the power consumption for the
host server, the model exhibited higher estimation fits com-
pared to the other two SISO models. This result is due to the
benefits of having multiple inputs in the black-box system
identification.

According to theMISOmodel properties discussed in 2.4,
and after reviewing our MISO model (Eq. 16), we can infer
that our MISO power model is stable and not an oscillatory
model. This result is due to its pole: it has a pole that resides
between zero and one (a = 0.9425).

However, we do understand that limitations in our mod-
eling exist. First, in our model estimations of the proposed
MISOmodel, we did not consider the impacts of other phys-
ical and virtual configurations. For example, we did not con-
sider the power consumption caused by memory, network,
and storage, and we did not include the power consumed due
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to the virtual configuration of these hardware components.
Our MISO model could be extended to include all of these
configuration changes, which could be achieved with a broad
range and variety of input spaces used in the black-box sys-
tem identification approach.

Because there are different types of machines with dif-
ferent capabilities, it is difficult to construct a single MISO
model that can work with all types of machines. Therefore,
we used a small-scale machine in this work as a proof-of-
concept for the MISO power modeling, and we are going to
apply theMISO powermodelingmethodology on higher and
larger scale physicalmachines.However,wehave not consid-
ered the recent advanced CPU frequency scaling capability
in some virtualized multicore processors. For instance, some
virtualized processors have their CPU cores divided into sets
that share one supply voltage and operate on the same fre-
quency [23].

6 Related works

System identification is important in computing system tech-
nology because it models many aspects of computing that are
required to be controlled on demand. It is necessary to model
the system performance, thermal dynamics and power con-
sumption of a computing server. For example, the response
time of a web server is modeled using system identification.
In [1] [25], a first-principles system identification approach
was used to construct a mathematical model for the web
server response time. As a further extension of this approach
(first-principles system identification), there is a move to
construct a mathematical model in a state space model in
which the system is considered as a Linear Parameter Vary-
ing (LPV). This direction appears in theworks of Tanelli et al.
[46–49], Lama et al. [29], Sun et al. [44],Wang et al. [55] and
Qin et al. [39–41]. However, a gray-box system identification
approach was used in [13,27,53]. Moreover, the admission
controlwas included to support the system response time, and
it was embedded into the system model as in Park et al. [38].
These contributions demonstrate the state-of-the-art in mod-
eling the response time of web servers; however, they are
generally first-principles approaches because it is possible
to have initial mathematical equations from queuing theory.
This is not the case with modeling of power consumption.

There are many diverse contributions for modeling the
power consumption for computing servers and data centers.
For example, there is an approach that uses basic power cal-
culations to obtain an initial mathematical equation and that
uses a training signal to predict the power consumption. This
approach is a gray-box approach, in which the power calcu-
lation could be inherited from the microchip design (as illus-
trated by Zhuravlev et al. [61]) and the training signal could
be analyzed, e.g., using aFast Fourier Transform (FFT).Chen

et al. [13,14] follow this approach; however, the authors in
thatwork are focusing on improving the systemperformance.

Another approach is to construct a mathematical model
for power consumption using the black-box system identifi-
cation approach. This approach is widely used in server- and
cluster-level power modeling, such as the contributions by
Lefurgy et al. [30,31], Wang et al. [51–54] and Tanelli et al.
[45,46]. In addition, Krishnan et al. [27] used this approach
(the black-box approach) to study the host server’s CPU and
memory configuration impacts on virtual machine perfor-
mance. The common implementation practice among these
contributions is modeling the power consumption as a SISO
system model. For example, Lefurgy et al. [30,31] modeled
the power consumption as a SISO model, where the CPU
frequency scale is the input of the system and the power con-
sumption is the system output. Furthermore, Krishnan et al.
[27] studied the server CPU frequency scale and memory
modeling separately as SISO models. These contributions
have escalated the design of the system controller to a mul-
tiple level and a hybrid design.

With the recent advances in computing technology that
help improve system performance and power consumption,
there are efforts to define a metering system for the power
consumption in virtualized hosting servers. For example,
Hagimont et al. [22] provided a good definition for the
relationship between the CPU dynamic frequency scaling
(DVFS) and the CPU time share (CPU credit). In addition,
Krishnan et al. [27] investigated the feasibility and challenges
for the server’sCPU frequency scale andmemory,where they
examined the upper and lower bounds (mix. and min.) of the
servers configurations. These meterings and studies support
our observations on the escalation occurring in the control
design for computing systems. Generally, these contributing
works that identified computing systems in multiple SISO
models to control power consumption and performance are
suggesting a coordinated hybrid control design. For example,
Deng et al. [15] constructed a coordinating system for both
CPU and memory. Similar coordinating systems have been
suggested by Ardagna et al. [5–7], Raghavendra et al. [42]
and Luo et al. [36] [43].

To the best of our knowledge, our power consumption
system modeling using the black-box system identification
to construct a MISO model is a pioneering work in power
consumption modeling. Our MISO model could reduce the
degree of complexity in the power consumption control
design.

7 Conclusion

Modeling and controlling the power consumption in host
servers is taking its place in both development and indus-
try. However, the rapid developments in computing resources
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have made modeling the power consumption using a math-
ematical model a difficult task. There are efforts that con-
sider only the physical configurations of a hosting server
to identify the power consumption model as a single-input
single-output system model. In this paper, we proposed a
multi-input single-output power consumption model for vir-
tualized host servers, in which it is possible to capture the
impact of different configuration levels (i.e., physical and
virtual configuration levels) in power consumption. We used
the black-box system identification method to identify the
MISO power model of virtualized host servers; we followed
the auto-regressive exogenous (ARX) structure to construct
themathematical equations. Through empirical experiments,
we evaluated both models (i.e., the SISO power model and
our MISO power model) and showed that the MISO model
captures the nature of power consumption in virtualized host
servers better than the SISO model used in existing works.
The prediction accuracy of power consumption using our
model reaches 98%, whereas the accuracy in SISO models
is only 85%.

In addition, in this paper, we studied the sampling time of
the MISO model and the model order. Notably, we observed
that there is a very noticeable impact of input delay in
the power consumption modeling in both types (SISO and
MISO) of power models. The 1st-order power model with
a 2nd-order input delay has higher linear regression fits for
predicting the power consumption in host servers than the
1st-order model with a 1st-order input delay.

There is no additional complexity when implementing our
MISOmodel because it has a similar implementation level as
other SISO models. However, we are working on integrating
the performance of guest servers (virtual machines) into the
MISO model.

Appendix: System dynamics of MISO power model

Any estimated model should be capable of predicting the
dynamic behavior of a system, and our MISO model should
have this prediction capability. Let us recall Eq. 8 and con-
sider the 1st-order model and the 2nd-order input delay as
the following Eq. 17

�p(k) = a · �p(k − 1) + b f 1 · � f (k − 1)

+ b f 2 · � f (k − 2) + bc1 · �c(k − 1) + bc2 · �c(k − 2).

(17)

Additionally, let us assume that we know the initial con-
dition�p(1) and the inputs of the previous two steps� f (1),
� f (0), �c(1), �c(0). Then, we could derive the solution to
Eq. 17 as follows. The first prediction of �p(2) is

�p(2) = a · �p(1) + b f 1 · � f (1) + b f 2 · � f (0)

+ bc1 · �c(1) + bc2 · �c(0), (18)

and the second prediction �p(3) is

�p(3) = a · �p(2) + b f 1 · � f (2) + b f 2 · � f (1)

+ bc1 · �c(2) + bc2 · �c(1). (19)

We can re-write Eq. 19 after substituting Eq. 18, as follows

�p(3) = a · [a · �p(1) + b f 1 · � f (1) + b f 2 · � f (0)

+ bc1 · �c(1) + bc2 · �c(0)] + b f 1 · � f (2) + b f 2 · � f (1)

+ bc1 · �c(2) + bc2 · �c(1). (20)

Or

�p(3) = a2 · �p(1) + a · b f 1 · � f (1) + a · b f 2 · � f (0)

+ a · bc1 · �c(1) + a · bc2 · �c(0) + b f 1 · � f (2)

+ b f 2 · � f (1) + bc1 · �c(2) + bc2 · �c(1). (21)

The third prediction �p(4) is

�p(4) = a · �p(3) + b f 1 · � f (3) + b f 2 · � f (2)

+ bc1 · �c(3) + bc2 · �c(2). (22)

Similarly, we can re-write Eq. 22 after substituting Eq. 21,
as follows

�p(4) = a · [a2 · �p(1) + a · b f 1 · � f (1)

+ a · b f 2 · � f (0) + a · bc1 · �c(1) + a · bc2 · �c(0)

+ b f 1 · � f (2) + b f 2 · � f (1) + bc1 · �c(2)

+ bc2 · �c(1)] + b f 1 · � f (3) + b f 2 · � f (2)

+ bc1 · �c(3) + bc2 · �c(2) (23)

Or

�p(4) = a3 · �p(1) + a2 · b f 1 · � f (1) + a2 · b f 2 · � f (0)

+ a2 · bc1 · �c(1) + a2 · bc2 · �c(0) + a · b f 1 · � f (2)

+ a · b f 2 · � f (1) + a · bc1 · �c(2) + a · bc2 · �c(1)

+ b f 1 · � f (3) + b f 2 · � f (2) + bc1 · �c(3)

+ bc2 · �c(2). (24)

Then, we can obtain the following solution

�p(k) = ak−1 · �p(1) +
k−1∑

i=1

ak−1−i · b f 1 · � f (i)

+
k−1∑

i=1

ak−1−i · b f 2 · � f (i − 1) +
k−1∑

i=1

ak−1−i · bc1 · �c(i)

+
k−1∑

i=1

ak−1−i · bc2 · �c(i − 1), (25)

where k is greater than 1 (k > 1), and a, b f 1, b f 2, bc1, and
bc2 are estimated parameters.
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