
Cost Adaptive Workflow Scheduling  
in Cloud Computing 

 
Dong-Ki Kang 

Seong-Hwan Kim 
KAIST 

Daejeon 
Korea 

+82-42-350-5495 
{dkkang, s.h_kim@kaist.ac.kr} 

 
Chan-Hyun Youn 

KAIST 
Daejeon 
Korea 

+82-42-350-3495 
chyoun@kaist.ac.kr 

 
Min Chen 

Huazhong University of Science and 
Technology 

Wuhan 
China 

+86-133-4999-9659 
Minchen2012@mail.hust.edu.cn

ABSTRACT 
In cloud computing, it remains a challenge to allocate virtualized 

resource with financial cost minimization and acceptable Quality 
of Service assurance. In general, the VM instance is allocated to 
cloud service users based on not actual job processing time but the 
fixed resource allocation time predetermined by cloud pricing 
policy in contrast to grid environment. In this case, the 
unnecessary cost dissipation is occurred by the wasted partial 
instance hours of allocated resource. To address this problem, we 
propose the heuristic based workflow scheduling scheme 
considering cloud-pricing model in this paper. Our scheme is 
composed of two phases : VM packing and MRSR (Multi 
Requests to Single Resource) phases. In VM-packing phase, pre-
assigned multi tasks are aggregated into the common VM instance 
sequentially, and these tasks are merged in parallel by MRSR 
phase. By using our proposed schemes, we are able to reduce the 
number of required VM instances and achieve the significant cost 
saving while we guarantee the user's SLA (Service Level 
Agreement) in terms of workflow deadline. Our proposed 
schemes cannot only reduce the cost by 30% compared to 
traditional workflow scheduling schemes but also assure user's 
SLA.   

Categories and Subject Descriptors 
C.2.4: Distributed Systems - Distributed applications 

General Terms 
Management, Economics, Theory 

Keywords 
Cloud Resource Management, Virtual Machine Allocation, 

Workflow Scheduling 

1. INTRODUCTION 
Cloud computing has been proposed as a new paradigm which 

can offer a feasible solution to solve the limitation of restricted 
amount of resources and reduce the cost for purchasing, 
maintaining and managing the physical resources [1]. In cloud 
computing environment, all the resources are represented as VM 
(Virtual Machine) instances and allocated to cloud service users 

based on the pay-as-you-go manner. In order to achieve success of 
cloud adoption, there are two main goals in terms of resource 
management: the cost-efficient VM allocation and user's SLA 
(Service Level Agreement) assurance. Obviously, the more 
expensive VM instance provides better computing performance to 
the cloud service users. There is a trade-off between the 
performance of resource and the resource purchasing cost. 
Therefore, many previous researches have been focused on 
finding the optimal point between the performance of VM 
instance and the allocated resource cost in accordance with the 
cloud service users' requests [2,3,4].   
 Generally, many cloud service providers such as Amazon, 
Google and GoGrid adapt the resource pricing policy which is not 
based on the actual job processing time but the fixed resource 
allocation time predetermined by cloud service providers [5,6,7]. 
In their policies, the VM allocation time is provided to cloud 
service users as not fine-grained time unit but coarse-grained time 
unit by the hour, month and year. Once the VM instance is 
allocated to the cloud service user, the user should pay the fixed 
price predetermined by cloud service providers regardless of the 
actual job processing time. That is, the user has to occupy the VM 
instance until the end of predetermined resource allocation period 
although no job to process remains more. In this case, the 
unnecessary cost dissipation is occurred by the wasted partial 
instance hours of allocated VM instance. Moreover, if the number 
of job is large and the required capacity for each job is trivial, the 
cost dissipation is more exacerbated since the idle capacity of 
each instance is increased. However, existing resource 
management schemes focused on traditional grid environments 
are disable to address this problem since they do not consider 
cloud-pricing model [8, 9, 10]. 
 To address this problem, we propose the heuristic based 
workflow scheduling scheme with consideration for resource 
allocation period based cloud-pricing model in this paper. Our 
scheme is composed of two phases: VM packing and MRSR 
(Multi Requests to Single Resource) phases. Firstly, in VM 
packing phase, each sub task already assigned with resource 
flavor type is aggregated to the generated VM instance 
sequentially. That is, the fragmented partial instance hours is 
minimized since sub tasks that require same resource flavor type 
is aggregated to the common VM instance in VM packing phase.  

Secondly, in MRSR phase, each sub task that aggregated by VM 
packing is merged in parallel. That is, tasks allocated in different 
VM instances are merged to the single VM instance and processed 
concurrently. In general, the single running job cannot utilize 
whole capacity of resource elements such as CPU, memory, 
storage, etc, simultaneously. The benefit of MRSR is based on the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICUIMC(IMCOM)’14, January 9–11, 2013, Siem Reap, Cambodia. 
Copyright 2014 ACM 978-1-4503-2644-5…$15.00. 
 



characteristic of multi-programming in which, the processing time 
for tasks  

Figure 1. Cloud based Workflow Management System 
 

running on single machine in parallel is shorter than in sequential 
manner if the thrashing is not occurred [11]. By using our 
proposed VM packing and MRSR schemes, we are able to reduce 
the number of required VM instances and achieve the significant 
saving of resource purchasing cost while we guarantee the cloud 
service user's SLA in terms of workflow deadline. In order to 
evaluate and demonstrate the performance of our proposed 
schemes, we establish the open-source cloud platform Openstack 
based testbed [12] and perform the Montage application in terms 
of workflow example [13, 14, 15]. 

2. CLOUD BASED WORKFLOW 
MANAGEMENT SYSTEM 

In the cloud environment, the pricing model is based on not the 
actual job processing time but the fixed resource allocation time 
predetermined by cloud service provider in contrast to the grid 
environment. Table 1 shows the VM instance flavor types and its 
associated cost according to the allocation period in cloud service 
from GoGrid [7]. Therefore, the unnecessary resource dissipation 
cost might be occurred when the grid based workflow scheduling 
approaches are applied to the cloud environment. Once a VM 
instance is generated, it should be allocated for a period of certain 
time based on the resource allocation time predetermined by cloud 
service providers. That is, if the required processing time for the 
application is shorter than the predetermined instance hours of the 
allocated resource, then the resource dissipation is occurred 
insomuch as the remaining allocation time of the resource. The 
resource dissipation cost is given as shown as follows, 

 

           (1) 

 

where  is the processing time of the task  on the VM 
instance flavor type  and  is the wasted cost of 
the generated VM instance with flavor type  processing the task 

.  is the cost of the VM instance flavor type  per the 
allocation period unit . For example, the  is hourly and the 
processing time of task on VM instance  is 1 and half hour, then 

 = 1.5. By Equation (1), we regard the ceiling function of  
as a real resource allocation duration. For example, if the actual 
processing time of task is 1.2 then the VM allocation duration is 2  

Table 1. Virtual Machine Instance Pricing by Flavor Type 
VM RAM Cores Storage Hourly Monthly Annual 

Small 1GB 1 50GB $0.08 $36.25 $362.50 

Medium 2GB 2 100GB $0.16 $72.50 $725.00 

Large 4GB 4 200GB $0.32 $145.00 $1,450.00 

X-Large 8GB 8 400GB $0.64 $290.00 $2,900.00 

 
hours. In this case, 0.8 hour duration of VM instance is dissipated. 
We focus on this surplus capacity of VM instance and maximize 
the utilization of allocated resource by using VM packing and 
MRSR aggregation. By using our proposed scheme, we can 
reduce the dissipation of the allocated resource and furthermore, 
minimize the additional delay caused by the VM instance startup. 

Figure 1 shows our proposed cloud based workflow management 
system. Workflow applications with required SLA description 
derived from cloud service users are submitted to the Cloud 
Resource Broker. The Cloud Resource Broker associates the multi 
cloud resource providers in order to allocate the tasks to the 
suitable virtualized resources according to the performance and 
cost of each provider. The workflow applications are represented 
as JSON (JavaScript Object Notation) description to be 
transferred from cloud service users to the User Interface of Cloud 
Resource Broker. The Workflow Management Module is a main 
component in the Cloud Resource Broker. There are four steps to 
process the workflow application in the Workflow Management 
Module.  Firstly, the whole workflow are parsed and divided into 
individualized sub-tasks. By using traditional workflow 
scheduling algorithms [18], the VM instance flavor types are 
allocated to each sub tasks initially. Secondly, Tasks having same 
allocated VM instance flavor type are packed sequentially into the 
common VM instance in VM packing phase. Finally, the packed 
tasks are merged in parallel with the deadline assurance in the 
MRSR phase. 
 We describe the process of workflow management scheduling in 
more detail. As shown in Figure 1, the process of MRSR scheme 
is as follows in detail, 
 
1) When the workflow description represented in JSON from the 
cloud service user is arrived at User Interface, the VM allocation 
for sub-tasks constituting workflow is performed by Workflow 
Management Module. 
 
2) The sub-tasks of workflow are parsed and the appropriate VM 
flavor types are allocated to each task. In VM allocation 
initialization phase, the VM flavor types for each task are 
determined by traditional GAIN/LOSS approaches [18]. 
 
3) In VM packing phase, the sequential merging of tasks with 
same flavor type is performed heuristically. In contrast to 
traditional allocation scheme based on grid environment, the 
already assigned VM instance which has slack capacity caused by 
fixed allocation period is reallocated to new task in order to 
reduce the resource dissipation cost. 
 



4) In MRSR phase, the parallel merging of tasks is performed 
heuristically. The pair of tasks is chosen and merged continuously 
until the workflow deadline is violated. By using VM packing and 
MRSR scheme, the required number of VM instance and slack 
capacity is minimized. 
 In next chapter, we describe our proposed schemes in more detail 
and show that proposed scheme is also efficient to improve both 
the cost performance and SLA assurance of the workflow 
management system. 

3. A COST ADAPTIVE WORKFLOW 
SCHEDULING 

We are able to reduce the required resource cost for the 
workflow process by using MRSR scheme compared to the 
traditional workflow scheduling. To do this, we represent the 
workflow process as Directed Acyclic Graph (DAG) as [8]. In our 
notation for DAG of the workflow ,  denotes the node (this is 
identical to task) and  denotes the index of node, that is  
denotes the  th node of the workflow . The arbitrary predecessor 
node, namely the certain  th parent node of the node  is 
represented as  and the set of parent nodes of node  is 
represented as . On the other hand, the arbitrary successor 
node, namely the certain  th child node of the node  is 
represented as  and the set of child nodes of node  is 
represented as .  

The directed connection from node  to  in the workflow  is 
represented as edge  and the whole edge set is represented as 

. In our workflow graph , a node which does not have any 
parent node is called a start node (or entry node)  and a node 
which does not have any child node is called an end node (or exit 
node) . In addition, the deadline  is included in the workflow 

. The workflow  is represented as follows,  
 

              Workflow  
                    (2) 

 
 By the VM initialization process in the Workflow Management 
Module, the the VM instances are allocated to each task 
considering the deadline . As shown in Table 1, as the 
performance of the VM instance is improved, the price of the 
resource is also increased proportionally. When we process the 
workflow  by using cloud resource, the cost for the processing is 
calculated as follows, 
 

                      (3) 

 
where  is the allocated VM flavor type for task  and  is 
the cost of the VM instance flavor type allocated to the task  per 
unit period of allocation  similar to the Equation (1). If the 
excessive VM instance is allocated to the task, then the utilization 
of VM instance is low and the resource dissipation is occurred. 
Otherwise, the deficient VM instance is allocated to the task, the 
deadline violation might be occurred. Therefore, the efficient 
workflow scheduling is required to satisfy both the resource 
purchasing cost saving and the deadline assurance.  

To do this, firstly we apply the traditional heuristic based 
workflow scheduling to our workflow process. Through the 
GAIN/LOSS workflow scheduling approaches, the VM flavor 
type is assigned to each task and corresponding start time, 
processing time, end time of all the tasks associated with allocated 
VM flavor type are calculated in the VM initialization allocation 
process. After initial VM allocation process, the derived workflow 

 has to satisfy following conditions [8, 9], 

 
Figure 2. Workflow tasks based on time flow 

 
                                    (4) 

         (5) 

 

where  is the startup delay of VM instance with flavor 
type  for the task .  and  are the end time and the start time 
of the task, respectively. If  is sufficiently small to 
neglect then it can be considered zero in our paper. Equations (6-8) 
calculate the total processing time of workflow ,  as follows, 
 

                            (6) 

        (7) 

                              (8) 

 
where  is the processing time of the task. We derive the 

 by Equation (7) since the processing time from task  to 
 depends on the critical path between task  and . If the node  is 

a start node and the node  is an end node, then  equals 
to . It is allowable to increase the total processing time of the 
workflow within the deadline as in Equation (4). 
 Figure 2 shows the workflow tasks based on the time flow. There 
are three cases in which the task delay is occurred in the workflow 
process. Firstly, the delay occurred by the specified task does not 
influence the total processing time of the workflow. In this case, 
the processing time length of the branch set in which the task 
delay is occurred is overwhelmed by the critical path of the 
workflow. Second, the delay occurred in the specific task 
influences the total processing time of the workflow but does not 
violate the deadline. In this case, the branch set in which the task 
delay is occurred becomes the new critical path in the workflow. 
Finally, the delay occurred in the specific task influences the total 
processing time of the workflow and the deadline is violated.  



 We can apply our proposed MRSR scheme to the workflow 
process in Figure 2. In order to deploy the MRSR scheme, MRSR 
candidate list should be generated before merging the tasks. In the 
merge plan of MRSR scheme, all the merged tasks should assure 
the workflow deadline and achieve the resource purchasing cost 
saving. If we represent the workflow  as the workflow with 
performed MRSR  times, then the constraints for the generation 
of MRSR candidate list are as follows, 
 
Constraint 1 in MRSR scheme 
 The arbitrary task  and  to be merged together should have time 
overlapped section. That is, the condition 

 has to be satisfied. 

 

Constraint 2 in MRSR scheme 
 The deadline of the workflow should not be violated by the 
additional delay caused by the merge the arbitrary two tasks.  

That is, the condition 
 has to be satisfied where  is the processing 

time of task  and  running concurrently on the VM instance 
allocated to the task . We assume that we are able to pre-establish 
the concurrent processing time table for MRSR integration. 
 
Constraint 3 in MRSR scheme 
 The resource usage cost should be decreased after the merge of 
two tasks  and .  

That is, the condition 

 has to be satisfied.  

 
As described above, if all the constraints are satisfied, then a pair 

of task  and  of the workflow  can be added to MRSR 
candidate list . The construction of MRSR candidate list 
continues until there is no pair of tasks which satisfy above 
constraints 1-3 more.  

After establishment of MRSR candidate list  is 
completed, then we select a pair of tasks to be merged from 

 in which the performance of resource cost saving is best.  
After MRSR process, the chosen pair of tasks is added to the 
MRSR merged list . The tasks in the  are not 
considered as target for the construction process of next MRSR 
candidate list . The criterion to select a pair of tasks 
which achieve the best cost saving in  is described in 
Equation (11),  
 

 

   (11) 

 

 The MRSR process is performed repetitively until it is impossible 
to find any pair of tasks which satisfy the MRSR constraints 1-3 
(i.e. the MRSR candidate list is empty).  

Algorithm 1 shows the process of our proposed VM packing 
scheme in detail. Firstly, the heuristic based scheduling of the 
input workflow  is performed as shown in line 1. From line 8 to 
14, the already running VM instance is reallocated to the new task 
if it has idle capacity. If there is no idle VM instance to pack the 
new task, then the new VM instance is generated and allocated to 
the task.  

When the re-allocation for all the tasks is completed, the VM 
packing is finished. 

Algorithm 1. VM packing for workflow scheduling 
Input : Workflow Directed Acyclic Graph  

Output : Scheduled Workflow  with VM packing 
01:  Workflow Scheduling for  by using GAIN/LOSS [18] 

02: 

03:  taskList ,  <- extract tasks from workflow  

04: 

05:  while(true) 

06:    taskIndex  = earliest start task( ) 

07:    requiredFlavor  = getFlavor(  in ) 

08:    for(each VM  ) 

09:      if(getFlavor( ) = f & state( , ( , = idle) 

10:         <-  allocateVM( ) 

11:        packedFlag = true 

12:        break 

13:      End if 

14:    End for 

15:    if(packedFlag = false) 

16:      VM  <- generateVM( ) 

17:       <-  allocateVM( ) 

18:       <- insert VM  

19:    End if 

20:    packedFlag = false 

21:    remove  from  

22:   if(  = empty) break 

23:  end while 

24:  

25:  workflow  <- apply  
 

Algorithm 2 shows the MRSR scheme in detail. Firstly, the 
scheduled workflow  by the VM packing is inputted to the Cloud 
Resource Broker. We set the MRSRCandidateList  in 
order to collect the available task pairs for MRSR process. Tasks 
that are done with MRSR process are added to the MRSR merged 
list  and they are not considered as targets for MRSR 
aggregation any more.  

From line 7 to 18, the detailed process for generation of MRSR 
CandidateList is shown. All the possible task pairs except those in 

 or  are considered to be put into MRSR 
CandidateList. When the MRSR process is performed, the total 
processing time and resource purchasing cost of the workflow are 
recalculated to check constraints of MRSR scheme. If the new 
total processing time of workflow complies with the deadline and 
the resource purchasing cost is decreased, the pair of tasks is 



added to the MRSRCandidateList. After the all the MRSR 
processes are performed, then we find the mergePair that 
minimizes the resource purchasing cost of the original scheduling 
of the workflow  in line 22. We apply that mergePair to the 
workflow  and repeat the MRSR process until the 
MRSRCandidateList is empty.  

In conclusion, we can generate the final scheduled workflow  
that decreases the resource purchasing cost compared to the 
traditional workflow scheduling approaches while guaranteeing its 
deadline by using MRSR scheme. In next chapter, we evaluate our 
proposed approach compared to the existing approaches in views 
of resource purchasing cost and processing performance by 
experiments based on the open source cloud platform. 

Algorithm 2. Task aggregation of workflow by MRSR scheme 
Input : Scheduled workflow  with VM packing 

Output : Scheduled workflow  with MRSR scheme 
01:  tempWorkflow  <- copy workflow  

02:  MRSRCandidateList  

03:  mergedList  

04: 

05:  while(true) 

06:    cost  <- calculate the cost of  by using (1) 

07:    For(each task g &  ) 

08:      For(each task j g &   &  ) 

09:        if( ) 

10:          workflow  <- apply MRSR aggregation with  to workflow  

11:          calculate total processing time  of workflow  by using (9), (10) 

12:          calculate cost  of workflow  by using (1) 

13:          if(t  deadline( ) & ) 

14:             <- insert task pair  

15:          end if 

16:        end if 

17:      end for 

18:    end for 

19:    if(  = empty) 

20:      break 

21:    end if 

22:    mergePair <- getTaskPair with minimum cost from  by using 
(11) 

23:    workflow  <- apply MRSR aggregation with mergePair 

24:     <- mergePair 

25:     <- empty 

26:  end while 
 

4. EXPERIMENTAL ENVIRONMENT AND 
PERFORMANCE EVALUATION 

In order to evaluate the performance of our proposed VM 
packing and MRSR scheme, we implement the Cloud Resource 
Brokering System based on the open-source cloud platform called 
OpenStack [12] that supports a variety of hypervisors such as 
XEN, KVM,  etc. Especially, we deploy the component of the 
OpenStack called Nova that provides the virtualized computing 
services to the cloud service users and manages VM instance 
allocation, VM image registration and VM flavor type 
management. The Nova controller operates as a front-end 
machine in OpenStack and Nova compute nodes practically 

allocate VM instances to process the tasks or applications from 
the cloud service users. The detailed configuration of our 
experimental environment is shown below in Figure 3. 

We have 5 HP Xeon (2.4Ghz) physical machines including 1 
controller node and 4 computing nodes. Each node has two wired 
NICs which constitute public and private networks and we are 
able to support VM flavor types from gogrid.small to xlarge since 
all the nodes have 16 cpu-cores and 16GB memory. Our 
Openstack cloud platform is based on Ubuntu 12.04 and called 
Essex. Through the Cloud Resource Brokering System with cloud 
node adaptor based on RESTful webservice API, the VM 
instances, which are on the Nova compute nodes, are allocated to 
cloud service users in order to process their applications. All the 
tasks of the workflow process are submitted to the Workflow 
Management Module in the Cloud  

 
Figure 3. Openstack based experimental system 

 
Resource Brokering System and distributed to each VM instances 
according to the VM packing and MRSR scheme. 
 In order to evaluate the performance of our proposed scheme, we 
adopt the Montage project as a practical workflow example that is 
a famous open-source based scientific application [13]. Generally, 
the scientific workflow application has dozens or hundreds of 
tasks to derive the scientific results. The Montage project has been 
invoked by the NASA/IPAC Infrared Science Archive as a toolkit 
for assembling Flexible Image Transport System (FITS) images 
into custom mosaics.  

The custom mosaics are built from the 2-Micron All Sky Survey 
(2MASS) Atlas images. In Tera Grid project, the Montage 
application is processed on the grid environment as a workflow 
[13]. Similarly, we design the Montage workflow example to 
evaluate the performance of our MRSR scheme. We schedule the 
tasks constituting Montage workflow example that is shown in 
table 2 onto the VM instances in order to evaluate the efficiency 
of our proposed MRSR algorithm. Our Montage workflow 
example consists of three processes for image M105, M106 and 
M108. The measure range vale of M105 is 1.5, M106 and M108 
is 1.7. The scope of the range value is from 0.05 to 7.0 and as the 
size of the range value is increased, the processing time is also 
increased since the image volume increases in size. 

 In order to process the tasks of the workflow, all the images are 
submitted to the cloud broker as FITS typed raw data files and 
generated as visible JPEG files by processing sub tasks of the 
workflow such as mImgtbl, mMakeHdr, mProjExec, mAdd and 
mJPEG. However, mImgtbl and mMakeHdr among all the sub 
tasks constituting the Montage workflow example require 



negligible processing time compared to other sub tasks, therefore 
we only focus on the mProjExec, mAdd and mJPEG to be 
processed by MRSR approach. Firstly, to perform MRSR 
algorithm to our workflow example, we need to check the 
processing time of each sub tasks in the workflow.  

As in table 2, generally the sub task mProjExec requires the 
longest processing time regardless of the image type, therefore the 
whole processing time of the workflow depends on mProjExec. 
The deadline of the workflow is set by 170 minutes. In order to 
compare our prosed MRSR approach and other traditional 
researches, we measured resource operation cost, resource 
dissipation cost, workflow processing time and resource 
utilization ratio. We evaluate the traditional approaches called 
MDP based workflow partitioning and heuristic based workflow 
scheduling approaches [8, 18]. 

 Table 2. The processing time of Montage workflow 
Images Tasks small medium large xlarge 

M105 1.5 

mProjExec 127 120 117 116 

mAdd 27 19 7 7 

mJPEG 7 7 6 6 

M107 1.7 

mProjExec 157 153 145 145 

mAdd 36 31 9 8 

mJPEG 8 7 7 7 

M108 1.8 

mProjExec 150 140 140 140 

mAdd 36 20 8 7 

mJPEG 9 8 8 8 

 
 In Figure 4, we show the resource operation cost graphs of the 
workflow partitioning, heuristic based GAIN/LOSS and our 
MRSR approach. The MDP based workflow partitioning and 
heuristic based GAIN/LOSS algorithm are optimized to the grid 
environment but they are not to the cloud environment which 
adapts the pricing policy based on the predefined resource 
allocation period, therefore unnecessary resource operation cost is 
imposed in the cloud environment. That is, in both two 
approaches, the VM instances are allocated to each task and its 
allocation duration is determined by cloud resource provider 
regardless of the practical task processing time, therefore resource 
dissipation might be occurred. However, we are able to reduce the 
number of allocated VM instances by using VM packing which 
packs multi tasks to the single VM instance. 
 We deduct several results in the Figure 4. Firstly, the cost 
reduction ratio of LOSS is bigger than GAIN, but this result might 
be different based on the task structure of the workflow. The 
important thing is that both in GAIN and LOSS algorithms, the 
resource operation cost can be decreased by using our VM 
packing approach. When the sequential task packing by VM 
packing is finished, then the parallel task packing is performed by 
using MRSR approach. That is, two chosen task pairs are 
reassigned to the single VM instance without any deadline 
violation, and the number of VM instance is decreased again by 
MRSR scheme. By using GAIN based MRSR and LOSS based 
MRSR, the cost reduction ratios are 24%, 31%, 24% and 34%, 
40%, 34% respectively, compared to the MDP based workflow 
partitioning and GAIN/LOSS approaches. 
 In Figure 5, the resource dissipation cost of allocated VM 
instances is shown as graph. The formula of VM dissipation cost 
is as follows, 

 
         (12) 

 
 That is, as the idle time of allocated VM instance is increased and 
the number of idle high-capacity flavor typed VM instances is 
increased, then the resource dissipation cost is also increased. 
Similar to the Figure 4, in the MDP based workflow partitioning 
and heuristic based GAIN/LOSS approaches in which VM 
instances are assigned to each task respectively, the idle period of 
resource allocation is large, therefore resource dissipation cost is 
also large as shown in Figure 5. However, in our VM packing and 
MRSR approaches, tasks are packed as many as possible to the 
allocated VM instance without any deadline violation so as to 
reduce the resource dissipation cost compared to the traditional 
approaches. By using GAIN based MRSR and LOSS based 
MRSR, the resource dissipation cost is decreased about 54%, 57%, 
54%  

Figure 4. Resource operation cost of traditional and proposed 
approaches 

Figure 5. Resource dissipation cost of traditional and 
proposed approaches 

 
and 63%, 65%, 63% compared to the MDP based workflow 
partitioning and GAIN/LOSS. 

The resource utilization ratio is shown in Figure 6. In MDP 
based workflow task partitioning and GAIN/LOSS approach, the 
resource utilization ratio is about 50%, this means that the half of 
allocated resource is dissipated. Our MRSR approach improves 
the performance of resource utilization about 20% better than 
existing approaches.  



The whole processing time of Montage workflow example is 
shown in Figure 7. The total processing time of workflow is 
determined by the critical path length of sub tasks constituting the 
workflow. This means that although the processing time of tasks 
that are not included in the critical path of the workflow is 
increased, if it is within the critical path length then the total 
processing time is not increased. That is, although the processing 
time is increased by task aggregation by using out VM packing 
and MRSR approach, the deadline of the workflow is not violated. 
Compared to the traditional GAIN/LOSS approaches, in our VM 
packing and MRSR approaches, the workflow processing time is 
not increased but rather is decreased about 1 minutes in GAIN 
based MRSR approach. 

In the VM packing process, the task overlapping is not permitted, 
therefore the workflow processing time is not increased. Contrast 
to VM packing process, each task processing time might be 
increased by task overlapping in the MRSR approach. However 
the total processing time is not increased if the aggregated tasks 
are not  

Figure 6. Resource utilization of traditional and proposed 
approaches 

Figure 7. Processing time of traditional and proposed 
approaches 

 

belong to the critical path or the reassigned VM flavor type has 
better capacity than original assigned flavor type. In latter case, 
the  performance improvement by VM reassignment is larger than 
the performance degradation by task aggregation. 
 Obviously, this result cannot be generalized in all the cases, just 
in the specific workflow example cases, but we can conclude that 
we are able to have chance not only to reduce the resource 

operation cost but increase the performance of processing 
compared to traditional approaches beyond deadline assurance. 

5. Conclusion 
In this paper, we propose novel workflow scheduling approach 

that is optimized to the cloud environment, which has period 
based pricing policy in order to overcome the limitation of 
traditional workflow scheduling approaches those are optimized 
to the grid environment. Our scheduling approaches are composed 
of VM packing and  Multi Requests to Single Resource (MRSR) 
scheme those are able to reduce the resource operation cost 
significantly with users SLA assurance by allocate multi tasks of 
the workflow to the single VM instance. 
 We evaluated our VM packing and MRSR approach on the 
Openstack based cloud platform and result in the performance 
improvement in terms of resource operation cost about 30% 
compared to MDP based workflow partitioning and heuristic 
based workflow scheduling algorithm without any deadline 
violation. 
 In future works, we consider not only processing cost but also 
communication cost of tasks between allocated VM instance in 
order to apply our proposal to the practical workflow management 
system. 

6. ACKNOWLEDGMENTS 
This research was supported by Next-Generation Information 

Computing Development Program through the National Research 
Foundation of Korea(NRF) funded by the Ministry of Education, 
Science and Technology (2012-0020522) and by the IT R&D 
program of MSIP/KEIT (10038768, The Development of 
Supercomputing System for the Genome Analysis) and by the 
MSIP (Ministry of Science, ICT&Future Planning), Korea, under 
the ITRC (Information Technology Research Center) support 
program (NIPA-2013-(H0301-13-4006)) supervised by the NIPA 
(National IT Industry Promotion Agency). 

7. REFERENCES 
[1] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud Computing : 

State-of-the-art and research challenges," J. Internet Services 
and Applications, vol. 1, issue 1, pp. 7-18, 2010. 

[2] H. N. Van, and F. D. Tran, "Autonomic virtual resource 
management for service hosting platforms," Proc. Int'l 
Workshop. CLOUD, 2009. 

[3] M. Mao, J. Li, M. Humphrey, "Cloud Auto-scaling with 
Deadline and Budget Constraints," Proc. Int'l Conf. 
IEEE/ACM Grid Computing, 2010. 

[4] S. Son, and K. M. Sim "A Price- and-Time-Slot-Negotiation 
Mechanism for Cloud Service Reservations," IEEE Trans. 
Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 42, 
no. 3, June 2012. 

[5] Amazon EC2 (2013), http://aws.amazon.com/ec2/ 
[6] https://cloud.google.com 
[7] GoGrid (2013), http://www.gogrid.com/ 
[8] J. Yu, R. Buyya, and C. K. Tham, "Cost-based Scheduling of 

Scientific Workflow Applicationcs on Utility Grids," Proc. 
Int'l Conf. e-Science and Grid Computing, pp. 140-147, July 
2005. 

[9] J. Yu, R. Buyya, and C. K. Tham, "Qos-based Scheduling of 
Workflow Applications on Service Grids," Proc. Int'l Conf. 
e-Science and Grid Computing, pp. 140-147, July 2005. 



[10] J. Yu, and R. Buyya, "A Taxonomy of Workflow 
Management Systems for Grid Computing," J. Grid 
Computing, vol. 3, issue 3-4, pp. 171-200, 2005 

[11] J. Tao, K. Furlinger, L. Wang, and H. Marten, "A 
Performance Study of Virtual Machines on Multicore 
Architectures," Proc. Int'l Euromicro Conf. Parallel, 
Distributed and Network-based Processing, 2012. 

[12] Openstack (2013) http://www.openstack.org/ 
[13] http://montage.ipac.caltech.edu/ 
[14] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S. Katz, 

C. Kesselman, A. Laity, T. A. Prince, G. Singh, and M. H. 
Su, "Montage: a grid-enabled engine for delivering custom 
science-grade mosaics on demand," Proc. SPIE5493, 
Optimizing Scientific Return Astronomy through 
Information Technologies, 2004. 

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, 
"The cost of doing science on the cloud: the Montage 
example," Proc. Int'l Conf. ACM/IEEE supercomputing, 
2008 

[16] H. Topcuoglu, S. Hariri, and M. Y. Wu, "Performance-
Effective and Low-Complexity Task Scheduling for 
Heterogeneous Computing," IEEE Trans. Parallel and 
Distributed Systems, vol. 13, no. 3, pp. 260-274, Mar 2002. 

[17] R. Sakellariou, and H. Zhao, "A hybrid heuristic for DAG 
scheduling on heterogeneous systems," Proc. Int'l Conf. 
Parallel and Distributed Processing Symposium, 2004. 

[18] R. Sakellariou, and H. Zhao, "Scheduling workflows with 
budget constraints," Integrated Research in GRID 
Computing, CoreGRID Series, S. Gorlatch, and M. 
Danelutto, eds., pp. 189-202, Springer, 2007. 

[19] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, "Cost-
Driven Scheduling of Grid Workflows Using Partial Critical 
Paths," IEEE Trans. Parallel and Distributed Systems, vol. 
23, no. 8, pp. 1400-1414, Aug 2012. 

[20] M. Mao, and M. Humphrey, "Auto-Scaling to Minimize Cost 
and Meet Application Deadlines in Cloud Workflows," Proc. 
Int'l Conf. High Performance Computing, Networking, 
Storage and Analysis (SC), 2011. 

[21] M. Mao, and M. Humphrey, "Scaling and Scheduling to 
Maximize Application Performance within Budget 
Constraints in Cloud Workflows," Proc. Int'l Symp. Parallel 
and Distributed Processing, 2013. 

[22] D. K. Kang, S. H. Kim, Y. Ren, B. S. Kim, W. J. Kim, Y. S. 
Kim, C. H. Youn, and C. S. Jeong, "Enhancing a Strategy of 
Virtualized Resource Assignment in Adaptive Resource 
Cloud Framework," Proc. Int'l Conf. ACM ICUIMC, 2013. 


