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Abstract—The cloud environment makes it possible to analyze large data sets in a 
scalable computing infrastructure. In the bioinformatics field, the applications are 
composed of the complex workflow tasks, which require huge data storage as well as a 
computing-intensive parallel workload. Many approaches have been introduced in 
distributed solutions. However, they focus on static resource provisioning with a batch-
processing scheme in a local computing farm and data storage. In the case of a large-
scale workflow system, it is inevitable and valuable to outsource the entire or a part of 
their tasks to public clouds for reducing resource costs. The problems, however, occurred 
at the transfer time for huge dataset as well as there being an unbalanced completion 
time of different problem sizes. In this paper, we propose an adaptive resource-
provisioning scheme that includes run-time data distribution and collection services for 
hiding the data transfer time. The proposed adaptive resource-provisioning scheme 
optimizes the allocation ratio of computing elements to the different datasets in order to 
minimize the total makespan under resource constraints. We conducted the experiments 
with a well-known sequence alignment algorithm and the results showed that the 
proposed scheme is efficient for the cloud environment. 
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1. INTRODUCTION 

To date, workflow management systems (WMS) in the distributed environment are for scien-
tific applications to solve sophisticated problems such as genomic analysis, drug discovery, dis-
ease identification, etc. As scientific applications become more complex, the management of 
resources that perform the workflow jobs has become one of the challenging issues [1, 2]. Re-
cently many large research centers and universities have conducted the studies on the high per-

※ This research was equally supported by the Next-Generation Information Computing Development Program through 
the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Tech-
nology (2012-0006425); and by the Next-Generation Bio-data Based Genome Research & Commercialization, which 
is funded by the Ministry of Knowledge Economy (10040231); and by the IT R\&D program of MKE/KEIT. 
(10038768, The Development of a Supercomputing System for Genome Analysis) 

Manuscript received January 25, 2012; first revision June 5, 2012; accepted September 6, 2012. 
Corresponding Author: Chan-Hyun Youn 
* Dept. of Information and Communications Engineering, KAIST, Daejeon, Korea (bs.kim@kaist.ac.kr) 
** Dept. of Electrical Engineering, KAIST, Daejeon, Korea ({chyoun, lyonggyu, miracle0318}@kaist.ac.kr) 
*** Electronics and Telecommunications Research Institute, Daejeon, Korea (wchoi@etri.re.kr) 

pISSN 1976-913X
eISSN 2092-805X

Copyright ⓒ 2012 KIPS



  

An Adaptive Workflow Scheduling Scheme Based on an Estimated Data Processing Rate for ~ 

  

556 

formance-computing platform to address the analysis of genomic data. The GNARE [3] project 
is one of the biggest genomic grid projects, which is conducted by the Argonne National La-
boratory. It analyzes the genomic sequence and submits computing-intensive to the grid envi-
ronment. Similarly the PUMA2 [4] system is an interactive, integrated bioinformatics environ-
ment for high-throughput genetic sequence analysis and metabolic reconstructions from se-
quence data. In addition, a new generation of non-Sanger-based sequencing technologies (next 
generation sequencing: NGS) has delivered on its promise of sequencing DNA at unprecedented 
speed, thereby enabling impressive scientific achievements and novel biological applications [5].  

Recent advances in cloud computing have made it possible to analyze very large data sets in 
scalable and cost-effective ways. However, most of them focus on a batch-processing scheme of 
data stored in a local file system [6]. Even though many solutions give us various distributed 
methods for analyzing huge data, they focus on static resource provisioning with batch pro-
cessing scheme in local computing farm and data storage. Since all datasets should be located in 
the local site before the processing starts, the transfer overhead of a huge amount of input da-
tasets, as well as an unbalanced execution time of different problem size, increases the total 
completion time.  

In this paper, we first describe a distributed bio-workflow broker (DBB) model, which coop-
erates with different workflow applications. On the DBB, we propose an adaptive resource-
provisioning scheme, including run-time data distribution and collection service (DCS), which 
decouples the data transfer process and data processing processes. The DCS makes it possible to 
eliminate the transfer time for both the input and output dataset from local storage to cloud data 
centers by parallelizing the data placement and data processing module. On the DCS platform, 
the adaptive processing element provisioning problem (APEPP) is proposed to optimize the 
allocation ratio of computing elements to each dataset in order to minimize the total makespan 
under resource constraints. For evaluating our proposed scheme, we utilize a well-known algo-
rithm for next generation sequencing tools and a pipelined application, which was used in a 
2009 genome research article for the first Korean genome [9].  

The remainder of this paper is organized as follows: in Section 2, we describe the workflow 
that has been integrated with the NGS model and the cloud based sequence alignment service. In 
Section 3, we propose an adaptive resource-provisioning scheme for the run-time data distribu-
tion and collection service. We evaluated our algorithm with six new different sequence align-
ment datasets and the effectiveness of our proposed model in Section 4. Finally, we make a con-
clusion in Section 5.  

 
 

2. WORKFLOW INTEGRATED BIO-COMPUTING ENVIRONMENT 

2.1 Integrated Genome Workflow Model 

A new generation of non-Sanger-based sequencing technologies have delivered on its promise 
of sequencing DNA at an unprecedented speed, thereby enabling impressive scientific achieve-
ments and novel biological applications [5]. Metabolic syndrome is a cluster of symptoms such 
as diabetes, obesity, hyperlipidemia, and high blood pressure [1]. However, we are still not real-
ly sure whether this type of disease prediction system is trustworthy or not. For the case of com-
plex diseases such as diabetes, we do not know for sure how many SNPs are related and it is 
absolutely certain that very complex gene-gene or SNP-SNP interactions would be made. Also, 
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there exists various kinds of sub-types of diabetes; each of which has different genetic and envi-
ronmental factors. In the bioinformatics technology, the next generation sequencing method 
which provides the sequence matching between reference data to personal DNA samples, pro-
vides a faster mapping algorithm compared to conventional approaches [8]. The complexity of 
the applications to compose the individual tasks and the data processing capability requires large 
scale workflow management methodologies and the parallelism for reducing total execution 
time as shown in Fig.1. 

 
2.2 A Distributed Bio-Workflow Broker on Clouds Computing Environment 

To cooperate between workflows in real-time, we describes a conceptual idea of the integrat-
ed workflow system. The middle layer includes functions that manage the interaction among 
different bio-workflow services such as the pressure wave monitoring, the cardiovascular model 
simulation, and the genome sequencing alignment services that have been implemented in the 
workflow model. The system could automate the simulation data and the experimental workflow 
processes. This type of large-scale data analysis workflow model needs a huge size of compu-
ting and storage infrastructure for performing overall workflow tasks with an in-house method. 
However, it is expensive to prepare enough resources and the efficiency of the resources is rela-
tively low since all tasks do not require the same computing capacity. For the hybrid cloud mod-
el, it is possible to outsource the entire or a part of the workflow tasks into the public cloud. In 
this case, on-demand resource provisioning is possible whenever it is needed. We suggest a hy-
brid cloud model for the workflow-computing model, which has distributed workflow services 
combined by cloud service model. As shown in Fig. 2, the distributed bio-workflow broker 
(DBB) system is located in the middle layer between the end user and the cloud service. The 
DBB functions as the bridge between the bio-services and the cloud data centers, as shown in 
Fig.2. The DBB stores the bio-service services, such as the SNP analysis for DNA or for the 
metabolic disease identification system, with both the genome database and the cell metabolism 

 

Fig. 1  System architecture for integrated genome analysis and cardiovascular simulation workfkow 
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measurement with a unified interface.  
To control the workflow execution flow, a task monitoring function is built to identify the 

task status including submission, execution, and publishing. However, the solutions focus on 
static resource provisioning with a batch-processing scheme in local computing farm and data 
storage. Since all datasets should be located in the local site before the processing starts, the 
transfer time of a huge dataset, as well as an unbalanced execution time of different problem 
sizes, increases the total completion time. In the following section, we propose the adaptive re-
source-provisioning scheme for both the data preparation process as well as for the data pro-
cessing process. 

 
 

3. ADAPTIVE RESOURCE PROVISIONING ON CLOUDS 

3.1 A Continuous Data Distribution and Collection Scheme 

We propose to use a data distribution and collection service (DCS) for handling a real-time 
data analysis platform that has been deployed on cloud computing environment in order to pre-
vent data transfer latencies. Since the DCS stores a small part of the total dataset, it should con-
tinuously replenish the input data from the data source. The DCS manages such continuous data 
streams from the data source to the processing elements (PEs), which are located in remote data 
centers. Let {j|j=1,2,...,J} be the kind of genome dataset for analyzing the sequence. As shown 
in Fig. 3 the DCS has finite buffer pairs - an application data buffer (ADB) and a receiver queue 
(RQ) for each dataset j. The ADB is a temporal storage for application input data and the RQ 
functions as the admission controller for demands from lower level nodes. The upstream queue 
and downstream queue means the communication channel. Assuming that a data object is a 
countable processing unit, the buffers in the DCS are modeled as queuing systems for which the 
arrival and departure processes are the data transfer time and data processing rate.  

For each dataset, the stability condition is constrained by:  
 

, ( ) ( )j jj J t t                              (1) 

 
where ( )j t and ( )j t  are the data transfer rate and data processing rate for each dataset j.  

 

Fig. 2.  Distributed bio-workflow model combined by cloud service 
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3.2 The Run-time Processing Element Provisioning Algorithm 

For all dataset J, we describe an adaptive process element provisioning problem (APEPP) un-
der a given set of PEs with the following notations: 

 
The goal of the APEPP is to find the optimal PE distribution ratio j on given datasets. This is 

achieved by equalizing the makespan of each stream j such as: 
 
 Adaptive PE provisioning problem (APEPP): 
 

minimize [ ]

subject to T[D]  = max [ ( )]  

1

j J j

j
j J

T D

T D t
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In order to obtain the APEPP, we utilize the proportional allocation method. Let ( )j t  be the 

unit processing rate of stream j at time t as: 
 

 

Fig. 3.  The data distribution and collection service (DCS) deployed in a public cloud 

Table 1.  Notations and Descriptions 

Notations Descriptions 

K  Available number of PEs 

( )jD t
 Remaining dataset of stream j on time t 

( )j t
 Processing rate of stream j on time t 

[ ( )]jT D t
 Estimated completion time of the stream j at time t 

[ ]T D  Total completion time (makespan) 

j
 Allocation ratio of PEs for stream j, 
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                               (2) 

 
where the j  means the average allocation ratio of the PEs in stream j. On the time t, then, 

we can obtain the estimated completion time of each stream by:  
 

( )
[ ( )]

( )
j

j
j

D t
T D t

t
                            .(3) 

 
The estimated completion time is different to the checking point. Using Eq. (3), we can find 

the newly calculated allocation ratio as being:  
[ ( )]

,
[ ( )]
j

j j
jj J

T D t

T D t
 



 
 .                          (4) 

 
Based on Eq. (4), The APEPP optimizer in the DCS balances the PE allocation ratio. Even 

though the APEPP algorithm assumes the fixed size of PEs, it is easily applicable to the elastic 
environment by increasing or decreasing the available PEs in the run-time. As a result, the pro-
posed APEP is presented in Algorithm 1, in which the K and J are the total number of PEs and 
the total number of dataset respectively. In Step 1, it performs the initial allocation ratio ( j ) by 
dividing the total PEs into the total dataset such as j jK a K . After finishing the initial alloca-
tion of the PEs, it determines the next checkpoint for performing the APEP in the run-time. On 
the other hand, the APEP algorithm is described in Step 2. When arriving at the check point, the 
APEP calculates the unit processing rate in Eq. (2), the estimated completion time in Eq. (3), 
and finally the allocation ratio in Eq.(3) sequentially until all of the data processing is finished.  

Algorithm 1.  APEP Algorithm 

Step. 1 : Initial Scheduling Stage 

1 Set K and J 

2 Allocation ratio for each dataset j, aj  1/J 

3 The number of PE allocation for each dataset j, Kj = aj *K 

4 Allocate Kj to each dataset  j 

5 Set the next check point for APEP 

6 Go to the Step 2 

Step. 2 : APEP Scheduling Stage 

1 If (arrives the check point && the data processing is not completed) then 

2   Calculate unit processing rate for each dataset based on (2) 

3   Calculate estimated completion time based on (3) 

4   Calculate allocation ratio based on (4) 

5   Allocate Kj to each dataset  j 

6   Set the next check point for APEP 

7   Go to the Step 2 

8 Else Exit 

EndIf 
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4. EXPERIMENTAL RESULTS 

4.1 A Sequencing Alignment Application for Experiment 

Fig. 4 shows a pipeline application that was used in a 2009 genome research article. In the 
figure, the wet-lab work process retrieves the personal genome information and makes format to 
sequence and the dry-lab work process performs various pipelined jobs such as indexing, align-
ment, pairing, formating, and reformatting for extracting the abnormal state in the sequence. We 
utilize the Burrows-Wheeler Aligner (BWA) application for the workflow, which is an efficient 
program that aligns relatively short nucleotide sequences against a long reference sequence such 
as the human genome. It implements the two algorithms—the bwa-short and the bwa-sw [8]. On 
the workflow tasks, the align finds the suffix array (SA) coordinates of the input data with refer-
ence data. We prepared three different dataset (input data) with two kinds of reference data as 
shown in Table 2. The size of the input dataset refers to the problem size. We made six cases by 
combining the two reference data above and three input reads. 

 

Fig. 4.  A pipeline application used in a 2009 genome research article [9] 
 
 

Table 2.  Experimental Parameters 

Index (dataset) File Name Size Total Sequences 

Reference chr22.fa 0.8GB - 

Dataset1 R10_75X75_200_s_1_1_sequence.txt 2.01GB 40,658,816 

Dataset2 R14_75X75_200_s_4_1_sequence.txt 2.11GB 42,423,298 

Dataset3 R16_75X75_200_s_2_1_sequence.txt 2.63GB 52,789,906 

Dataset4 R21_s_1_1_sequence.txt 3.48GB 77,500,842 
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4.2 Experimental Environment 

As shown in Fig. 5, we utilized a total of 32 PEs using 8 machines with 4 cores (Intel(R) 
Xeon(R) CPU W3520 2.67GHz) and a single data distribution server. For the resource configu-
ration, we conducted two different evaluations to validate the effect of the continuous data dis-
tribution scheme and the effect of the adaptive resource-provisioning scheme, respectively.  

 

 

 

4.3 The Effect of the Continuous Data Distribution Scheme 

In the first experiment, we conducted a single dataset (dataset1) and we divide the total se-
quences (40,658,816) to 262,144 for distributing the dataset. For evaluating the effect of the 
continuous data distribution scheme we increased the degree of the parallelism as (2,4,8,16,32). 
Fig. 6(a) shows the data placement time and the data processing time for each chunk. Even 
though the numbers of the processors (PEM) increased, the data placement time did not increase, 

 

Fig. 5.  An experimental environment and resource configurations 

 

Fig. 6.  The Execution time of each chunk and the totoal completion time of the total dataset with
different parallelism 
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as it is ignorable when compared to the data processing time. In addition, Fig. 6(b) shows the 
almost linear scalability in accordance with increase in the number of processors (PEMs) 

 
4.4 The Effect of Adaptive Resource Provisioning 

The second experiment that we conducted was with 4 different kinds of datasets and we ap-
plied three different scheduling policies. We compared the policies, which are listed below. 

 
 Static/fixed provisioning- static allocation with a fixed number of processors. 
 Static/proportional provisioning- proportional allocation with the dataset size.  
 Adaptive provisioning - re-allocation based on the estimated completion time. 
 
The static/fixed scheduling simply allocates the same number of processing elements. Second, 

the static/proportional one schedules the data in proportion to the dataset size. Finally, we ap-
plied our proposed adaptive scheme. As shown in Fig. 7, the proposed adaptive scheduling 
scheme shows a small variation in the completion time among all of the datasets, as compared to 
the other two scheduling policies. For each policy, the largest completion time among all da-
tasets as presented as 41 minutes, 35 minutes, and 28 minutes, respectively. Since the total com-
pletion time was determined by the largest completion time. As a result, the proposed adaptive 
scheduling scheme minimized the total completion time, even though the completion time of 
R10 and R14 are larger than those of the static/fixed scheme. 

 

 

 

5. CONCLUSION 

In this paper, we proposed a data distribution and collection service (DCS), which decoupled 
data transfer and data processing procedures. The DCS is possible to eliminate the time to trans-
fer the input and output dataset from the local storage to cloud farms. Particularly, the DCS au-
tonomously regulates the data transfer process by synchronizing the data transfer process and 
data processing procedure, respectively. In the proposed DCS, we further exploited the adaptive 
resource-provisioning scheme for optimizing the allocation ratio of the computing elements to 
the dataset in order to minimize the total makespan under resource constraints. We examined the 

 

Fig. 7.  Comparision of the total completion time for the three different resource-provisioning policies 
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experiments with a well-known sequence alignment algorithm and the results showed that the 
proposed scheme was efficient for the cloud environment. 
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