
J Supercomput (2013) 66:700–720
DOI 10.1007/s11227-012-0858-7

Churn-aware optimal layer scheduling scheme
for scalable video distribution in super-peer overlay
networks

Yong-Hyuk Moon · Jeong-Nyeo Kim ·
Chan-Hyun Youn

Published online: 15 January 2013
© Springer Science+Business Media New York 2013

Abstract To model a layered video streaming system in super-peer overlay networks
that faces with heterogeneity and volatility of peers, we formulate a layer scheduling
problem from understanding some constraints such as layer dependency, transmission
rule, and bandwidth heterogeneity. To solve this problem, we propose a new layer
scheduling algorithm using a real-coded messy genetic algorithm, providing a fea-
sible solution with low complexity in decision. We also propose a peer-utility-based
promotion algorithm that selects the most qualified neighbor to guarantee the sus-
tained quality of streaming despite high intensity of churn. Simulation results show
that the proposed layer scheduling scheme can achieve the most near-optimal solu-
tions compared to the four conventional scheduling heuristics in the average stream-
ing ratio. It also highly outperforms those with different peer selection strategies in
terms of the average bandwidth (6.9 % higher at least) and the variation of utilization
(11.3 % lower at least).

Y.-H. Moon (�) · J.-N. Kim
Software Research Laboratory, Electronics and Telecommunications Research Institute (ETRI),
Daejeon, South Korea
e-mail: yhmoon@etri.re.kr

J.-N. Kim
e-mail: jnkim@etri.re.kr

Y.-H. Moon
Department of Information and Communications Engineering, Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea
e-mail: yhmoon@kaist.ac.kr

C.-H. Youn
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea
e-mail: chyoun@kaist.ac.kr

mailto:yhmoon@etri.re.kr
mailto:jnkim@etri.re.kr
mailto:yhmoon@kaist.ac.kr
mailto:chyoun@kaist.ac.kr

Churn-aware optimal layer scheduling scheme for scalable video 701

Keywords Content delivery · Layer-coded video · Streaming · Churn resilience ·
Peer-to-peer network · Genetic algorithm

1 Introduction

Currently, scalable video distribution services using peer-to-peer (P2P) networks
have been rapidly adopted for various purposes to achieve fast and reliable dissem-
ination of massive data from multiple sources. However, the presence of multiple
supplying peers requires a new solution of the video segment allocation problem
under heterogeneous bandwidth constraints [1]. In particular, video streaming over
volatile or harsh environments in which nodes are prone to departure (i.e., leave or
fail) becomes further complicated [2, 3].

There exist several studies in the literature to address the streaming control and the
node stability issues in P2P networks. Block scheduling schemes in P2P networks
have been intensively studied. In the early stage, a random and a local rarest first
(LRF) scheduling have been employed in Chainsaw [4] and in DONet [5], respec-
tively. Moreover, PALS [6] has been proposed for the adaptive streaming of layered-
coded video and focuses on coping with bandwidth variations. However, its evalua-
tion has not been performed on mesh overlay and a new sender is randomly selected
when some layers are lost or delayed. In [7], DONLE has formulated a priority based
block scheduling problem to maximize the average throughput of data-driven P2P
streaming. Although peers are very unstable in terms of session time, resulting in
the significant deterioration of streaming quality, loss recovery has been little dis-
cussed in these works. Conventionally, neighbor selection strategies focusing on dif-
ferent criteria (e.g., propagation delay and bandwidth capacity) have been proposed
as well in order to ensure the equable allocation of aggregated bandwidth from mul-
tiple peers. Li Xiao has reported that the amount of workload on an ordinary-peer is
directly related to deciding the optimal size and stability of the super-peers in [8]. As
discussed in [9], assuming that super-peer overlay network is modeled by a bimodal
random graph, the stability of networks entirely depends on the fraction of super-
peers. However, the more super-peers do not always guarantee better performance
(e.g., throughput) as discussed in [6]. Further, these studies have paid less attention
to the real-time property of streaming service, even though their analytical model can
offer a generic aspect of super-peer’s churn on the network stability.

From the studies discussed, the main challenges addressed in this paper can be
summarized as follows:

• Lack of Control. Conventional approaches based on the server-based content de-
livery system turn out to be insufficient due to its large operation cost (e.g., server
overload) and the existing block scheduling schemes also face with the lack of
adaptive control for differentiated streaming quality. Hence, scaling for streaming
system is still painful [10].

• Dynamic Volatility. Random churn causes the shortage of collective availability
(i.e., aggregated bandwidth), resulting in that streaming performance cannot be
guaranteed within a required service level. Confidently, consuming peers suffer
from poor fault tolerance.

702 Y.-H. Moon et al.

To tackle the dynamic churn [2] of multiple supplying peers, first we exploit the
super-peer overlay structure [11], which highly ensures collective availability for
large-scale streaming. To use advantages of layered coding (i.e., scalable video cod-
ing [12]), we also adopt a scalable (multilayered) video1 for streaming. This approach
is very efficient to provide the differentiated streaming quality by adaptively extract-
ing only necessary bit-streams of layers according to the given bandwidth constraints.

Despite the potential benefits of combining the two techniques, finding an opti-
mal layer allocation generally requires the super-exponential computation complex-
ity (i.e., NP-complete) under heterogeneous bandwidth. Further, an optimal solution
may not be always achieved due to the fast converging to local optima in the existing
heuristics [4–7]. In addition to that, the conventional approaches which are designed
to reduce the adverse effects of node departures in P2P file sharing or task execution
[8, 9] are significantly inadequate to handle the churn-vulnerable streaming service;
namely, those may well achieve good performance, only if the P2P networks can be
stably maintained.

In this paper, we propose a churn-aware optimal layer scheduling scheme which
consists of two algorithms: (1) a real-coded messy genetic algorithm (rmGA) [13]
based layer scheduling (GALS), which provides a near-optimal layer allocation with
acceptable time complexity; and (2) peer-utility-based promotion (PUP), which up-
dates a group of corresponding super-peers by adding new neighbors for rapidly com-
pensating the layer losses.

The primary contributions of this paper are as follows:

• We formulate a layer scheduling problem from understanding some constraints
which originate from the layer dependency, the transmission rule, and the band-
width heterogeneity in P2P networks. Further, we suggest how to prioritize each
layer in order for supporting differentiated streaming services.

• To provide high adaptability for the layer control, we propose a novel layer
scheduling algorithm using a real-coded messy genetic algorithm that is locally
performed at each receiving peer.

• Also, a proposed peer-utility-based promotion guarantees the dynamic reconfigu-
ration of layer allocation under the random churn model, so that horizontal scala-
bility of all peers can be achieved.

• Simulations results demonstrate superiority of the proposed layer scheduling
scheme in comparison with the conventional layer scheduling heuristics and neigh-
bor selection approaches.

The remainder of this paper is organized as follows. Section 2 describes the layered
streaming model in P2P networks with respect to its construction, transmission, and
download rate. In Sect. 3, we formulate a layer scheduling problem and then derive an
optimal policy for this problem. We propose a churn-aware optimal layer scheduling
scheme and also discuss behavior of dynamic churn in Sect. 4. Performance of the

1Unlike the conventional video compression algorithms based on single-layer approaches, such as
MPEG-4 and H.264/AVC, the scalable video is variable and flexible according to various network and
device conditions. It can be dynamically retransformed in terms of spatial, temporal, and quality scalabili-
ties.

Churn-aware optimal layer scheduling scheme for scalable video 703

proposed layer scheduling scheme is evaluated and simulation results are discussed
in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Layered streaming model in P2P networks

A layered streaming model based on the two-level hierarchy [14], comprising
ordinary-peers and super-peers allows decentralized networks to run more efficiently
by exploiting heterogeneity and distributing load to peers that can handle the burden.

We first adopt the layered-coding technique in order to ensure the inexpensive and
adaptive data (i.e., layer) dissemination in P2P overlay networks. A scalable video is
accumulatively constructed with a set of layers (i.e., a sub-stream) L = {l1, l2, . . . , lv}
by the layered coding, where l1 is a basement layer and others are enhancement layers
(see Fig. 1). In particular, the enhancement layers are applied to improve streaming
quality. In general, the overall streaming quality may be directly proportional to the
number of received layers at a consuming peer.

Definition 1 (Layer dependency) To play a specific scene of the scalable video, a
lower layer is essentially required because a higher layer is not independently decod-
able without a lower one [12].

Furthermore, we consider Layered Streaming in Super-peer Overlay Networks
(LSON) using the gossiping protocol [8] for encouraging interaction among neigh-
bor peers by which the peer partnership is established. As illustrated in Fig. 2, most
peers are ordinary-peers O = {Ox | x = 1,2, . . . , n} of consuming bit-streams, while
a small fraction of peers act as super-peers for coordinately supplying layers. How-
ever, the roles of peers are neither exclusive nor prescribed.

Definition 2 (Service bootstrapping) After such a streaming service on LSON is
activated for a particular VLC, a streaming server Π sends the layered streams to the
bootstrapping peers B by priority for enabling the distributed cache effects of layers.

Definition 3 (Peer partnership) When an ordinary-peer x,Ox , newly joins LSON to
receive layered video streams, it first gets a list of randomly selected super-peers,

Fig. 1 Structure of a
layered-coded video (VLC)

704 Y.-H. Moon et al.

Fig. 2 Conceptual diagram of
LSON

S = {Si | i = 1,2, . . . ,m} and Π from the nearest bootstrapping peer for reducing
startup latency.

Using the aforementioned partnership, each peer broadcasts its layer availability
to other peers, so that a layer scheduler at each peer can aggregate this information.
A scalable video originates from Π and each peer receives some layers of the scalable
video from supplying peers such as Π,S, and O . Simultaneously, each peer can
supply partial or whole layers received or stored.

For the sake of simplicity, we assume that all of the super-peers and ordinary-peers
have the same upload rate us and uo, respectively, where us > uo. Let r+(t) (t ≥ 0)
denote aggregated download rate from those peers at time t .

Property 1 (Bound of r+(t)) We note that r+(t) must be bounded by the download
link capacity dc of a peer, that is,

r+(t) ≤ dc, ∀t ≥ 0. (1)

Let ϕs(t) and ϕo(t) (t ≥ 0) denote |S| and |O|, respectively, for time t . We also
assume that |O| is proportional to |S| as discussed in [8]; that is, ϕo(t) = α · ϕs(t),
where α is some positive number. Thus, r+(t) of Π,S, and O in LSON is equal to
uΠ + (us + α · uo) · ϕs(t), where uΠ is a upload rate of Π .

Property 2 (Share of r+(t)) Since all peers share r+(t), the upload rate available for
each Ox , ∀x ∈ X (X = {1,2, . . . , n}) is given by

uΠ + (us + α · uo) · ϕs(t)

(1 + α) · ϕs(t)
. (2)

From Eqs. (1) and (2), r+(t) can be determined as follows:

r+(t) = min

{
dc,

uΠ + (us + α · uo) · ϕs(t)

(1 + α) · ϕs(t)

}
. (3)

However, ϕs(t) varies over time due to the departures and failures, so that r+(t)

can be fluctuated unexpectedly. This fact implies that some peers possibly suffer from

Churn-aware optimal layer scheduling scheme for scalable video 705

layer missing, which causes the performance degradation [15]. One crucial restric-
tion is that although each peer has heterogeneous bandwidth capacity in general, the
above model does not consider how to offer differentiated streaming quality to peers
according to their download rates.

Therefore, we will propose how a layer allocation (i.e., schedule) is adaptively
generated to fully utilize the given r+(t) by coping with the fluctuation of r+(t) and
peer heterogeneity in Sects. 3 and 4, respectively.

3 Problem formulation for LSON

3.1 Layer streaming process

For ease of explanation of layer streaming process, we present Fig. 3 that illustrates
the overall process of optimal layer allocation in LSON, which comprises four phases
such as availability aggregation, layer scheduling, layer fetching, and peer promotion.

Availability aggregation As previously discussed, a layer scheduler at each Ox can
aggregate the layer availability information of S for a particular VLC:

Ax
v = {

ax
i,j ∈ {0,1} | 1 ≤ i ≤ m, 1 ≤ j ≤ v

}
,

Fig. 3 Overall process of optimal layer allocation in LSON; The two phases marked by an asterisk are
performed by proposed individual algorithms whose details will be discussed in Sect. 4

706 Y.-H. Moon et al.

where ax
i,j = 1 indicates that a super-peer i, Si , can offer a layer j , lj , that is received

from Π , B , or other peers and ax
i,j = 0 otherwise. As depicted in Fig. 3, an upper

matrix represents Ax
v given to Ox , where a gray-colored cell denotes a layer that is

available at a particular super-peer. Thus, a layer scheduler can identify how many
layers can be available at each Si by counting ones along with ith row of Ax

v as∑
j=1..v ax

i,j .

Layer scheduling Using the given Ax
v , a layer scheduler of Ox can initially decide

an optimal layer allocation (referred to as schedule or decision), that is,

Rx
v = {

rx
i,j ∈ {0,1} | 1 ≤ i ≤ m, 1 ≤ j ≤ v

}
,

where Rx
v indicates which layer would be fetched from which peer. rx

i,j = 1 means
that Ox would receive lj from a super- or ordinary-peer i; on the other hand, rx

i,j = 0

means that lj would not be scheduled on a peer i. Thus, Rx
v can be considered as a

set of pointers that are depicted by a black dot on the gray-colored cells of a middle
matrix denoted by Rx

v in Fig. 3.

Layer fetching By referring to the initialized decision, Rx
v ,Ox can preferentially

begin fetching relevant layers from S in parallel, where an already fetched layer is
represented by black-colored cells in the layer allocation result denoted by Fx

v =
{f x

i,j }m×v . However, some layers can exceptionally be lost or delayed (denoted by
gray-colored cells with a black bar) at any time due to the lack of outgoing bandwidth
or the departure of a specific Si . Moreover, the layer can be unavailable (denoted by
gray-colored cells with a black x-bar) for a while since gaining exclusive access to
layers on S is generally granted to only one Ox at a time.

For mitigating the impact of these undesirable cases, (1) missing (lost, delayed,
or unavailable) layers can be promptly sent by Π to facilitate the maximum use of
Ox ’s incoming bandwidth; or (2) those layers might be individually forwarded from
other ordinary-peers (neighbors). Of the two countermeasures, the former will reach
to the limit because Π has to consume much outbound bandwidth and then it will
finally encounter difficulties to handle these challenging situations. Since the peer
partnership of LSON is established using the mesh-based P2P paradigm, the latter
would be somewhat helpful to supplement the insufficient availability of super-peers.
Nevertheless, discovering relevant layers that may be very sparsely distributed among
random peers is both inefficient and rigid to perform a fast recovery in some cases,
resulting in that the layer request and fetching operations work as random scheduling.
Therefore, it is hard to achieve the optimal scheduling performance.

Peer promotion To overcome these problems, those layers should be rescheduled
with an updated group of super-peers that are adaptively reconfigured by a peer pro-
motion process when the failure or departure of Si is detected (see Fig. 3). Rather than
attempting to use the full bandwidth capacity of Π or depending on the individual
and random assistance of other ordinary-peers, this process can provide higher adapt-
ability to minimize the loss of collective layer availability if Ox ’s peer partnership is
assumed to be well established in LSON. This is because the promotion process aims

Churn-aware optimal layer scheduling scheme for scalable video 707

to rapidly reconfigure a set of super-peers of Ox by adding the most capable peer that
has sufficient availability to supplement missing or ready (denoted by gray-colored
cells with a black triangle in Fig. 3) layers. Through this process, a layer scheduling
process can decide a new Rx

v for re-fetching those layers by reflecting the availabil-
ity information of an added super-peer with the currently updated Ax

v of the existing
(stable) super-peers together.

However, the two static approaches discussed above can be alternatively used be-
fore a rescheduling process that is composed of selection of a new super-peer, up-
date of Ax

v , and generation of a new Rx
v is initiated by a peer promotion process.

In this case, some layers that are already supplemented by these approaches will
not be included in the rescheduling process in order to avoid duplication of effort
in re-fetching those layers. Therefore, ordinary-peers complementarily enhance their
streaming quality by exchanging and relaying different layers of VLC under such a
dynamic mesh overlay comprising the corresponding super-peers and Π .

The layer streaming process comprising the above four phases iteratively proceeds
until the end of sub-stream of VLC. In the aforementioned model, we can guarantee
optimal layer allocation and its rapid rescheduling even though some layers are un-
predictably missed due to random churn.

3.2 Optimal policy for layer scheduling

In the LSON model, we assume that r+(t) (i.e., network bandwidth) is normalized as
the number of layers that each peer can send or receive. Hence, the total bandwidth
consumed at Ox (denoted by QT

x) is calculated by summing the number of layers
fetched from Π,S, and O (other than Ox), respectively, as follows:

QT
x =

∑
i∈I

∑
j∈J

rx
i,j + QΠ

x , I = {1,2, . . . ,m} ∪ (
X − {x}), J = {1,2, . . . , v}, (4)

where QΠ
x represents the upload rate available from Π to Ox .

Since our objective is not only to save the cost of Π but also to maximize the
effectiveness of P2P data dissemination for ∀x ∈ X, an optimal policy of the layer
scheduling can be formulated as follows:

Max:
∑
x∈X

(
QT

x − QΠ
x

) =
∑
x∈X

∑
i∈I

∑
j∈J

rx
i,j , (5)

where the five constraints must be ensured in terms of layer dependency, transmission
rule, and bandwidth (rate) heterogeneity, when a layer scheduler of Ox attempts to
make a new decision for layer allocation.

• (C1) rx
i,j ≤ ax

i,j ,∀i ∈ I,∀j ∈ J,∀x ∈ X : lj would be fetched if and only if the
layer is available at Si .

• (C2)
∑

i∈I rx
i,j ≥ ∑

i∈I rx
i,j+1,∀j ∈ J,∀x ∈ X: Due to the layer dependency, the

number of received lj is larger than or equal to that of received lj+1 for all layers.
• (C3)

∑
i∈I rx

i,j ≤ 1,∀j ∈ J,∀x ∈ X: Once an arbitrary layer is fetched from Si ,
a duplicated request is limited.

708 Y.-H. Moon et al.

• (C4)
∑

j∈J rx
i,j ≤ ui,x,∀i ∈ I,∀x ∈ X: A total number of layers received from only

Si is less than or equal to the outgoing bandwidth capacity allocated from Si to Ox

(denoted as ui,x).
• (C5) QT

x ≤ r+(t),∀x ∈ X : QT
x cannot exceed r+(t).

Thus, a greater value of Eq. (5) guarantees a better scheduling solution in terms
of the total consumed bandwidth (i.e., fetched layers). In order to achieve an opti-
mal layer allocation, we formulate a layer scheduling problem with the three types of
constraint discussed. However, solving this problem for all consuming peers is im-
practical (i.e., global optimization); since, this approach highly increases the problem
size. If local availability information is sufficiently updated for each peer, a local layer
scheduler could provide a feasible or near-optimal decision for scalable video distri-
bution. Therefore, Eq. (5) needs to be rewritten as Max: ∑

i∈I

∑
j∈J rx

i,j in order for
adopting the receiver-driven layer scheduling approach.

Further, we only consider how to assess QT
x for an initial layer allocation in

Eq. (4), where all layers are scheduled if Ox requests full-rate streaming of VLC;
however, only missing or ready layers become an object of attention in rescheduling
as mentioned earlier. So, each case will need to be individually considered as follows:

J =
{ {1,2, . . . , v}, if initial scheduling,

Lmis ∪ Lready, if rescheduling.
(6)

In Eq. (6), Lmis and Lready are a set of missing layers and ready (not fetched yet)
layers, respectively. Therefore, a set of demanded layers are set by the union of the
two sets in case of rescheduling. More specifically, QT

x can be obtained by summing
the total number of layers fetched by individual scheduling cases.

3.3 Service level decision

If higher layers are aggressively requested, the fetch request for lower ones possibly
would not be able to be served before their playback deadline. To solve this problem,
we assign the same (highest) importance to lower layers in order to guarantee the
standard quality level of streaming services; on the other hand, lower priority is given
to higher layers. The above consideration gives us a good motivation to provide dif-
ferentiated streaming quality in LSON. As summarized below, we apply a different
prioritization rule for the two request types. Let lxth denote a threshold layer for Ox .

(i) The requests for layer l1 to lxth, is considered to be of the highest priority. Since
we assume that the same (highest) priority is set to all those layers, we do not
prioritize those layers.

(ii) For layer lxth+1 to lv , lower layers have higher priorities than those of higher
layers. For every layer, a request is iteratively sent to supplying peers in order of
importance.

For this reason, a layer scheduler should decide a threshold layer that is used to
classify L into two classes: lower layers and higher layers. Let Lx and Lm denote a
set of layers to be scheduled at Ox and a minimum set of layers to be fetched at Ox ,
respectively.

Churn-aware optimal layer scheduling scheme for scalable video 709

Lemma 1 (Threshold layer) Suppose that Lm is given by Eq. (7), we can decide lxth.

|Lm| =
{ |Lx | − |Lmis| < r+(t), if missing layers are found,

|Lx | + |Lsur| ≤ v, if surplus layers are found,
(7)

where Lmis and Lsur are a set of missing layers and surplus layers, respectively
(Lmis,Lsur ⊂ L).

Proof If aggregated download rate is equal to or larger than the size of whole layers L

(i.e., r+(t) ≥ v) then full-rate streaming quality would be supported; in other words,
Lx is equal to L (Lx ← L). Otherwise (r+(t) < v), Lx ← r+(t). However, Lx could
be reduced (increased) by the number of missing layers (the surplus upload rate of
Π,S, and Oy , where x 	= y, ∀x, y ∈ X) in streaming. Thus, the minimum number of
layers to be fetched at Ox , |Lm|, is intuitively determined as Eq. (7). Since lxth is the
highest layer in Lm, an index of lxth can be given by th ← |Lm|, where th is a layer
index of lxth. �

One definite advantage of using the threshold layer based fetching technique is
that Ox can avoid excessive efforts (e.g., competition) for receiving layers lxth+1 to
lv . By focusing on layers l1 to lxth first, faster and more reliable data dissemination
would be achieved in terms of Ox ’s |Lm| from the different prioritization rule rather
than dealing with all layers equally. In particular, this design principle is effective in
implementing differentiated streaming service.

So far, we consider that maximizing the total number of received layers is an
objective function for LSON. However, each layer has a different importance value
as discussed. Besides, Definition 1 implies that in P2P networks the overall quality
of scalable video streaming is not proportional to the amount of correctly received
layers. To incorporate the concept of threshold layer into the modified equation of
Eq. (5), Max: ∑

i∈I

∑
j∈J rx

i,j , we reformulate an optimal policy for the quality guar-
anteed layer scheduling as follows:

Max:
∑
i∈I

∑
j∈J

rx
i,jw

x
j , (8)

where ωx
j denotes a given priority to lj . Thus, we have ωx

1 = ωx
2 = · · · = ωx

th and
ωx

th+1 > ωx
th+2 > · · · > ωx

v , where ωx
j ,∀j ∈ J is assumed to be bounded between 1

and an arbitrary integer of more than 1. This weighted equation is much suitable to
evaluate the differentiated streaming quality in LSON.

From the above discussion, the two important requirements can be derived as fol-
lows:

• (R1) To achieve an optimal layer allocation without violating the constraints
(C1)–(C5) is a combinatorial optimization problem. Due to its large-scale search
space, this problem also has been proved to be NP-complete in the strong sense [1].
So, a new scheduling heuristic is necessary.

• (R2) In addition to that, when churn occurs, a layer scheduler should reconfigure an
initial allocation by selecting new super-peers in order to mitigate the performance
degradation due to large propagation delays or high layer loss rates.

710 Y.-H. Moon et al.

Next, we will discuss details of a new layer allocation scheme designed for LSON.

4 Churn-aware optimal layer scheduling scheme

The purpose of a churn-aware optimal layer scheduling scheme is to consistently
provide a feasible solution during streaming process in LSON. In this section, we
first describe how the proposed GALS algorithm rapidly reaches to a near-optimal
solution while keeping time complexity low. Then, we suggest a new churn model
for LSON and also propose a PUP algorithm for dynamic reconfiguration of initial
allocation, when churn occurs.

4.1 rmGA based layer scheduling algorithm

rmGA offers the stochastic search ability to evolve an initial population of candidate
schedules (called chromosomes) into an optimal one by recombination operations
under the principle of the survival of the fittest. To codify an individual layer allo-
cation to the scheduling problem on LSON, we first define a chromosome as a set
of 2-tuples (called a gene) such as (super-peer index i, layer index j). For example,
a chromosome u, cu = {(3,1); (2,2); (4,3); (2,4)}, means that four layers can be
separately fetched from S3, S2, S4, and S2 in a parallel manner. cu is then simply
translated to Rx

v , where rx
31, rx

22, rx
43, and rx

24 are only equal to 1. Namely, cu is very
tractable to express various combinations of genes and is also compatible with Rx

v in
this one-dimensional representation.

The following describes the rmGA search operations (see Algorithm 1).

• Step 1 (Initialization) Based on the above encoding schema, rmGA starts by ini-
tializing a population Pg (g = 1) that comprises a fixed number of cu, 1 ≤ u ≤ U ,
where U is a fixed integer number.

Algorithm 1 rmGA based layer scheduling

1: Input: Ax
v = {ax

i,j }|I |×|J |,Rx
v = {rx

i,j }|I |×|J |,L ∈ VLC

Ox ∈ O,Si ∈ S,Π,g = 1
2: Generate Pg for L by referring Ax

v ;
3: while g < gmax do // gmax: the maximum number of generations
4: Evaluate ∀cu ∈ Pg,1 ≤ u ≤ U by Eq. (8);
5: if ∃cu ∈ Pg satisfying that fu ≥ fth then
6: copt = cu and break;
7: end if
8: (ca, cb) = Select parents by Prsel(cu);
9: co = Cut-and-Splices(ca, cq);
10: ĉo = Mutate(co)and then add ĉo inPg++;
11: end while
12: Output: Translate copt into Rx

v ;
13: Ox starts to fetch layers according to Rx

v ;

Churn-aware optimal layer scheduling scheme for scalable video 711

• Step 2 (Evaluation) To evaluate a fitness value of each cu, fu, Eq. (8) is used. If fu

is sufficiently large enough compared to a predefined threshold of fu, fth, then cu

becomes an optimal layer allocation cOPT and this procedure is finally terminated.
• Step 3 (Selection) Otherwise, chromosomes having relatively higher fitness val-

ues should be selected by such probability Prsel(cu) = (fu/
∑

u=1..U fu) in the
roulette-wheel selection [16] in order to choose superior solutions, which would
be evolved in the next generation.

• Step 4 (Recombination) To obtain globally evolved solutions, cut-and-splices uni-
formly swaps two genes between ca and cb , where 1 ≤ a, b ≤ U and a 	= b, result-
ing in that co is produced. To explore local solutions, mutation is then performed
by randomly exchanging two genes within each co. After these two operations, we
can have more feasible offspring ĉo in the next generation Pg++.

• Step 5 (Termination) All steps are iterated until the stopping condition (g ≥ gmax)
is satisfied.

We note that the above operations must abide with (C1)–(C5). The more detailed
review on genetic algorithm operations is discussed in [13, 16], and [17]. With rmGA,
the proposed layer scheduling algorithm generates the optimal Rx

v , which maximizes
the overall performance of layered streaming, while maintaining the search complex-
ity low.

Definition 4 (Optimal instance size) In Algorithm 1, the size of the given problem
instance, Í , is equal to the length of cu, so that its size is determined by |J |. When
rmGA reaches to copt with arbitrary Í in the best possible convergence time, we say Í

is the optimal instance size, Í opt. In other words, rmGA applied to Í opt can guarantee
faster convergence time to near-optimal solutions compared with other sizes.

Lemma 2 (Complexity analysis of Algorithm 1) Suppose that Í opt can be deter-
mined, the computational complexity of rmGA on the layer scheduling problem is
linearly increased despite the exponential growth rate �s of the search space.

Proof Computational complexity is a property of a problem and not an algorithm.
Since v layers are iteratively streamed to Ox and each has different playback dead-
line, unlike a general class of optimization problem, a layer scheduler does not need
to handle all layers at the same time. So, the problem size is divisible according to
the given conditions on LSON. Moreover, the size of search space |I |+|J |−1C|J | on
the problem is an exponential function of both |I | and |J |; however, �s, is only de-
termined by |I |, if Í opt is known. As theoretically reviewed in [18], if Í opt is given
prior to layer scheduling, then the length of cu is fixed; thus, gmax required to find copt

is linearly increased (some constant c times O(Í opt)) even though �s exponentially
increases. �

The superiority of the GALS algorithm can be demonstrated, merely depending
on how much optimal solution is generated for each scheduling request when par-
ticular conditions (i.e., super-peers and demanded layers) are given. However, such
conditions vary over time due to the volatility of peers. From the layer scheduling
viewpoint, next we will discuss how the time-varying conditions can be managed for
ensuring consistent provisioning of collective availability in harsh environments.

712 Y.-H. Moon et al.

4.2 Dynamic churn model

Before discussing an adaptive neighbor selection method, we start by describing a
dynamic churn model. As observed in [19], we model the dynamic behavior of peers
in LSON as a regenerative on/off process {Yi(t)} for each Si , where Yi(t) = 1 if Si

is on at time t and 0 otherwise. So, a type of each Si can be classified by distinct
pairs of cumulative distribution functions (CDFs), defining durations of online and
offline periods as T := {(F1(t),G1(t)), . . . , (F£(t),G£(t))} according to its degree
of volatility. In this model, the heterogeneity of peers can be adjusted by the diversity
factor £.

Lemma 3 (Percentage of remaining peers). Let E[Φi] denote the expected lifetime
of Si . Given E[Φi], we can estimate a churn rate of each Si from some arbitrary
distribution as described in Eq. (9).

Hi(t) =
((

E[Φi]
)−1

∫ x

0

(
1 − Fi(z)

)
dz

)
. (9)

Proof Since Yi(t) is associated with a pair of (Fi(t),Gi(t)), one of these CDFs is in-
dependently and uniformly selected from T for each Si . Let Ri(t) denote the remain-
ing lifetime of Si at time t in the current on cycle. Assuming that LSON is sufficiently
large and stationary, the CDF of Ri(t) is defined by Hi(t) := Pr[Ri(t) ≤ x|Yi(t) = 1],
t ≥ 0, where it can be obtained as Eq. (9). �

Therefore, as a discrete event timer for churn, our dynamic churn model will be
used for determining what percentage of peers should be left at each instance in time.
Although the exponential distribution is typically used to model some phenomena
resulting from a large number of independent events, it is not proper to model churn
behavior because peer arrivals and departures are not completely independent as dis-
cussed in [20].

4.3 Peer-utility-based promotion

We suppose that each Ox is able to manage a set of current neighbors Nx , which
potentially supply some demanded layers Ldem to Ox . To quantify the promotion
criterion, rather than concentrating on one specific aspect for assessing eligibility of
each neighbor, we consider three representative factors such as (1) a hop count hk,x

between ∀k ∈ Nx and Ox , (2) the upload bandwidth capacity allocated from k to Ox ,
uk,x , and (3) the expected stability level of kth neighbor, σk . To make it possible, we
need to transform the three different quantities into the same domain in the form of
combined function.

Definition 5 (Utility function) The three factors are incorporated into a utility func-
tion U(·), where a peer utility of kth neighbor is defined as U(k) := ((1/hk,x) · uk,x ·
σk).

Churn-aware optimal layer scheduling scheme for scalable video 713

Algorithm 2 Peer-utility-based promotion

1: if E[Ri(t)] = 0 ‖ |Lmis ∪ Lready| > ñ // ñ: the maximum tolerable number
of layers

2: Set Ldem = Lmis ∪ Lready // Ldem: a set of demanded layers for
rescheduling

3: while ∃k ∈ Nx do
4: Calculate U(k) for k ∈ Nx

5: end while
6: Sort ∀k ∈ Nx by the value of U(k)

7: S ← Promote k with the highest utility value of U(k)

8: Set Ś = S ∪ k

9: Call the GALS algorithm with Ś and Ldem // Ś: a updated super-peer
group of Ox

10: end if

Property 3 (Distance) A neighbor with fewer hops (from Ox to kth neighbor) is
preferred due to the relatively low forwarding latency. So, abnormal delays would be
prevented [21].

Property 4 (Layer availability) uk,x is calculated as
∑

j∈Ldem
ax
k,j , a

x
k,j ∈ {0,1},

where ax
k,j = 1 indicates lj is available at kth neighbor and otherwise (ax

k,j = 0),
k cannot provide lj .

Property 5 (Stability level) σk can be estimated as the number of connections sus-
tained with other peers during its remaining session time. Thus, σk can be derived
as ‘1 − an isolation probability of kth neighbor with randomly assigned degree of
connectivity ck’, where an isolation occurs at the time that all links of peer is discon-
nected.

σk = 1 − ρ · ck

(1 + ρ)ck − 1
= 1 −

(
2ck · E[Rk]

δ + 2d

)((
1 + 2E[Rk]

δ + 2d

)ck

− 1

)
. (10)

In Eq. (10), ρ is a ratio of the expected remaining lifetime of kth neighbor, E[Rk],
to the expected search delay E[Dk] of detecting its link disconnection. If we assume
that Ox can detect the neighbor isolation through some transport layer protocol (i.e.,
keep-alive mechanism), E[Dk] would be determined within (0, (δ + 2d)/2], where δ

and d denote the keep-alive timeout and the search delay, respectively.

Algorithm 2 describes the detailed steps for discovering and promoting the most
qualified neighbor(s) prior to rescheduling the demanded layers as below:

• Step 1: If the expected residual lifetime of Si , E[Ri(t)] is expired over the churn
prediction model or some Lmis and/or Lready are found, then departure of Si or lack
of collective layer availability can be detected. In this case, the PUP algorithm is
activated for the neighbor discovery.

714 Y.-H. Moon et al.

• Step 2: Then, layers required to be re-fetched, Ldem, are set by a union of Lmis and
Lready.

• Step 3: Individual values of U(k) are calculated for ∀k ∈ Nx by using a utility
function and then each neighbor is ranked by its value.

• Step 4: Some neighbor(s) with the highest utility value is (are) selected and then
added to an existing set of super-peers of Ox,S, for obtaining an updated set of
super-peers, Ś.

• Step 5: After Ox ’s S is reconfigured, a GALS algorithm is re-executed with Ś and
Ldem. Through the above process, loss of Lmis and/or Lready can be adaptively
recovered.

By assessing values of U(k) for ∀k ∈ Nx , the proposed PUP algorithm can adap-
tively promote some Ox ’s neighbor(s) with the highest utility value to S and also
contributes to the rapid rescheduling of Ldem that is caused by the unexpected churn
and layer loss. As discussed in Sect. 3.1, insufficient upload capacity or long forward-
ing latency can be also partially supplemented by relaying streams originated from
other neighbors or Π in LSON.

A heterogeneity level of each peer in terms of connectivity can be determined by
ck in Eq. (10) because peers loosely connected enter and leave the network quite
frequently, so that degree-dependent failures are commonly considered in this paper.
Also, ck can be influenced by a type of used graphs to model the super-peer overlay
networks. In particular, we assume that LSON is constructed by perfect difference
graphs, which are undirected inter-connection graphs with z vertices. Each peer has
a degree of connectivity as ck = O(

√
z), so that LSON becomes more scalable than

that modeled by other types of graph [9].

5 Simulation and discussion

5.1 Simulation setup

We extensively conduct simulations to evaluate the proposed layer scheduling scheme
in LSON by implementing rmGA codes on the OverSim framework [22]. Each of
3,000 sub-streams is encoded into 10 layers according to the scalable video coding
and layers are repeatedly transmitted until the end of the simulation. All layers have
identical size (e.g., 1024 bytes) for ease of demonstration and the default streaming
rate is 512 kbps.

In the simulation, we suppose that n is 1,000, m can be maintained within 5 %
of n [8], and the number of connected super-peers given to each Ox is 15 at max-
imum. Since each Ox can averagely keep about 16 connections with its neighbors
over time under assumption of using perfect difference graphs, we intentionally im-
pose the limited number of super-peers to Ox in order to make Ox cooperate with its
neighbors. Further, the inbound and outbound bandwidth of peers is assumed to be
uniformly distributed.

Commonly used parameter configuration in the simulation is shown in Table 1.

Churn-aware optimal layer scheduling scheme for scalable video 715

Table 1 Parameter
configuration Parameters Default value

Number of ordinary-peers 1,000

Maximum number of super-peers 5 % of n

Maximum number of connected super-peers for
each Ox

15

A size of sub-streams, number of layers for a
sub-stream

3,000, 10

Layer size 1024 bytes

Streaming rate 512 kbps

Population size 30

Maximum number of generations 250

Cut-and-Splices probability 0.18

Mutation probability 0.25

Fig. 4 CCDF of residual
session lengths with x = 1 hour,
1 ≤ λi ≤ 50

5.2 Behavior analysis of radom churn

In Fig. 4, when a lifetime of Si,Φi , follows the Weibull distribution [20] as dis-
cussed in the study [19], we plot the percentage of remaining super-peers during
the service time with different values of scale parameter λi , using the complemen-
tary CDF (CCDF) of Ri(t) for i = 1,2, . . . ,m. From the observation [2], we have
Φi = λi · (− ln(Ω))−1/s as a generating function, where a shape parameter Ω is
uniformly drawn from [0, 1] and s is approximately 0.4. E[Φi] is then obtained as
λi · Γ (1 + 1/s), where Γ is a gamma function [20], so that the CCDF of Ri(t) is
finally given by 1 − Hi(t). As shown in Fig. 4, we can decide a degree of heavy-
tailedness in Ri(t) by adjusting a value of λi in [1,∞]. When λi is closer to 1,
Si would be highly volatile, resulting in that the departure more frequently occurs.
For instance, 41 % of super-peers with t > 1 hour are approximately remaining at
8,000 seconds, when λi is set to 50.

716 Y.-H. Moon et al.

Fig. 5 Comparison of average
streaming ratio under six
different layer scheduling
schemes (10 ≤ λi ≤ 100)

5.3 Average streaming ratio

Figure 5 compares the streaming quality of six different layer scheduling heuristics
under the relatively stationary LSON, where the average streaming ratio is computed
by dividing

∑
x∈X(QT

x − QΠ
x)/r+(t) by n. Over the whole range of streaming rate,

the proposed scheme outperforms the other approaches by as much as 1.5–24.8 %;
while, on average its result is 2.9 % smaller than the ideal solutions of global opti-
mization. However, global optimization may not scale well with increasing size of
LSON because it requires global knowledge.

5.4 Churn resilience assessment

To perform a comparative study of the proposed GALS algorithm using different
promotion methods, we define three strategies targeting specific metrics such as hk,x ,
uk,x , and σk . The conventional shortest path first strategy (SPFS) and content avail-
ability oriented strategy (CAOS) use the hop count and the first two factors to assess
an k’s utility value, respectively; whereas, all metrics are combined into U(·) for the
proposed PUP strategy (PUPS).

Figure 6 demonstrates the average bandwidth allocated to ordinary-peers versus
different intensity of churn with the three strategies. More specifically, CAOS remains
competitive to PUPS up to 80 in λi ; however, a layer loss rate of CAOS is sharply
increased compared to PUPS, as λi grows. On the average, PUPS outperforms others
by 11.3 % and 28.9 %, respectively and guarantees the smallest variation in band-
width.

Figure 7 depicts traces of unfairness in respect of load balance under the same
conditions above. This metric is obtained as a standard deviation of average utiliza-
tion. We observe that fairness deteriorates over the whole point of λi in all strategies;
while, the average utilization is stably maintained as shown in Fig. 7. Consequently,
the proposed GALS algorithm using PUPS offers the best availability and immunity
to random churns in processing the requests of fetching layers under heterogeneous
bandwidth limitations in LSON.

Churn-aware optimal layer scheduling scheme for scalable video 717

Fig. 6 Guaranteed bandwidth

Fig. 7 Unfairness of load
balance

5.5 Saving of server bandwidth

We assume that peer types are classified into four classes according to its inbound and
outbound bandwidth capacity as shown in Table 2. For instance, peers having higher
connectivity or uptime (e.g., connected through Ethernet) are more stable in the net-
work than the peers having lower connectivity or uptime (e.g., connected through
dial-up line).

In particular, the percentage of Ethernet peers, PEP, is set to 5 % by default and
those of others are randomly distributed. We investigate the effects of correspond-
ing supplying peers of Ox on the server cost with different combinations of PEP and
neighbor selection methods such as PUPS and CAOS. For this simulation, we also
use the GALS algorithm. Figure 8 shows that as the number of corresponding supply-
ing peers is increased from 2 to 10, the consumption of average server bandwidth is
reduced and PUPS is more effective in saving the server cost. In addition, high contri-
bution of more-capable peers is desirable for LSON due to their abundant outbound
bandwidth.

718 Y.-H. Moon et al.

Table 2 Peer types
Peer types Inbound/outbound

Mobile 784/128 kbps

xDSL 15 × 102/400 kbps

Cable 3 × 103/103 kbps

Ethernet 104/5 × 103 kbps

Fig. 8 Server bandwidth
reduction

5.6 Simulation runtime

In this section, we seek to determine which Í can make the layer scheduling prob-
lem computationally tractable under the given streaming conditions. Figure 9 plots
the computing overhead of scheduling layered streams using the proposed scheme
with 15 super-peers at maximum. For this simulation, since we assume that the re-
quest interval is 2.5 seconds, the proposed scheme can deal with 160 layers (i.e.,
20 sub-streams) in 35–90 microseconds for every period. Namely, the best possi-
ble convergence time is guaranteed when Í opt = 160 layers under the maximum of
15 super-peers and the average of 16 neighbors. This result is practically acceptable
compared to the request interval.

6 Conclusion

In this paper, we have studied the problem of scheduling differently prioritized layers
with the goal of maximizing the differentiated quality of streaming services and min-
imizing the adverse effects of churn on LSON, where incremental scaled stream pro-
cessing is allowed over multiple upstream peers. Based on our understanding of the
problem, main drawbacks have been investigated in respect of aggregated download
bandwidth in the LSON model and then we have formulated a layer scheduling prob-
lem (in the form of optimal policy) for the differentiated layered streaming under the
three types of constraint such as layer dependency, transmission rule, and bandwidth

Churn-aware optimal layer scheduling scheme for scalable video 719

Fig. 9 Computing overhead of
the proposed layer scheduling
scheme. A maximum of 15
supplying peers and a request
interval of 2.5 seconds are
employed over LSON

heterogeneity. In order to solve this problem, we have proposed an rmGA based layer
scheduling (GALS) algorithm, which can rapidly search for a near-optimal solution
within the best possible convergence time. Further, we have proposed a peer-utility-
based promotion (PUP) algorithm to improve decentralized manageability against the
high rates of churn. Compared to the conventional scheduling methods and neighbor
selection strategies, the proposed churn-aware optimal layer scheduling scheme has
achieved high sustainability as well as low fluctuation as analyzed in various simula-
tion results, while satisfying all the constraints discussed.

Acknowledgements This research was equally supported by R&D programs of MEST/NRF [2012-
0020522, the Next-Generation Information Computing Development Program], and MKE/KEIT
[10039260, Integrated development environment for personal, biz-customized open mobile cloud ser-
vice and Collaboration tech for heterogeneous devices on server]. This research also was supported by IT
R&D program of MKE/KEIT [10038768, The Development of Supercomputing System for the Genome
Analysis].

References

1. Ibaraki T, Katoh N (1988) Resource allocation problems: algorithmic approaches. MIT Press, Cam-
bridge

2. Stutzbach D, Rejaie R (2005) Understanding churn in peer-to-peer network. In: Proceedings of the
ACM Internet measurement conference (ACM IMC)

3. Zhou X, Ge Y, Chen X, Jing Y, Sun W (2012) A distributed cache based reliable service execution
and recovery approach in MANETs. J Converg 3(1):5–12

4. Pai V, Kumar K, Tamilmani K, Sambamurthy V, Mohr AE Mohr EE (2005) Chainsaw: eliminating
trees from overlay multicast. In: Proceedings IEEE INFOCOM

5. Zhang X, Liut J, Lis B, Yum T-SP (2005) Coolstreaming/DONet: a data-driven overlay network for
efficient live media streaming. In: Proceedings IEEE INFOCOM

6. Agarwal V, Rejaie R (2005) Adaptive multi-source streaming in heterogeneous peer-to-peer networks.
In: Proceedings of the multimedia computing and networking (MMCN)

7. Zhang M, Chen C, Xiong Y, Zhang Q, Yang S (2007) Optimizing the throughput of data-driven based
streaming in heterogeneous overlay network. In: Proceedings of ACM multimedia modeling (ACM
MMM’07)

8. Xiao L, Zhuang Z, Liu Y (2005) Dynamic layer management in superpeer architectures. IEEE Trans
Parallel Distrib Syst 16(1):1078–1091

720 Y.-H. Moon et al.

9. Li J-S, Chao C-H (2010) An efficient superpeer overlay construction and broadcasting scheme based
on perfect difference graph. IEEE Trans Parallel Distrib Syst 21(5):594–606

10. Kim H, Lee S, Lee J, Lee Y (2010) Reducing channel capacity for scalable video coding in a dis-
tributed network. ETRI J 32(6):863–870

11. Mastroianni C, Cozza P, Talia D, Kelley I, Taylor I (2009) A scalable super-peer approach for public
scientific computation. Future Gener Comput Syst 25(3):213–223

12. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the
H.264/AVC standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120

13. Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms: motivation, analysis, and first results.
Complex Syst 3:493–530

14. Wei Q, Qin T, Fujita S (2011) A two-level caching protocol for hierarchical peer-to-peer file sharing
systems. J Converg 2(1):11–16

15. Luo H, Shyu M-L (2011) Quality of service provision in mobile multimedia—a survey. Hum-Cent
Comput Inf Sci. doi:10.1186/2192-1962-1-5

16. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley, Reading

17. Moon Y-H, Youn C-H (2012) Integrated approach towards aggressive state-tracking migra-
tion for maximizing performance benefit in distributed computing. Clust Comput. doi:10.1007/
s10586-011-0197-0

18. Lobo FG, Goldberg DE, Pelikan M (2000) Time complexity of genetic algorithms on exponentially
scaled problems. In: Proceedings of the genetic and evolutionary computation conference, pp 151–
158

19. Leonard D, Yao Z, Rai V, Loguinov D (2007) On lifetime-based node failure and stochastic resilience
of decentralized peer-to-peer networks. IEEE/ACM Trans Netw 15(3):644–656

20. Ross SM (1996) Stochastic processes. Wiley, New York
21. Aikebaier A, Enokido T, Takizawa M (2011) Trustworthy group making algorithm in distributed

systems. Hum-Cent Comput Inf Sci. doi:10.1186/2192-1962-1-6
22. Overlay and peer-to-peer network simulation (OverSim) framework. http://www.oversim.org/

http://dx.doi.org/10.1186/2192-1962-1-5
http://dx.doi.org/10.1007/s10586-011-0197-0
http://dx.doi.org/10.1007/s10586-011-0197-0
http://dx.doi.org/10.1186/2192-1962-1-6
http://www.oversim.org/

	Churn-aware optimal layer scheduling scheme for scalable video distribution in super-peer overlay networks
	Abstract
	Introduction
	Layered streaming model in P2P networks
	Problem formulation for LSON
	Layer streaming process
	Availability aggregation
	Layer scheduling
	Layer fetching
	Peer promotion

	Optimal policy for layer scheduling
	Service level decision

	Churn-aware optimal layer scheduling scheme
	rmGA based layer scheduling algorithm
	Dynamic churn model
	Peer-utility-based promotion

	Simulation and discussion
	Simulation setup
	Behavior analysis of radom churn
	Average streaming ratio
	Churn resilience assessment
	Saving of server bandwidth
	Simulation runtime

	Conclusion
	Acknowledgements
	References

