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Abstract This paper presents a new state-tracking migra-
tion scheme that is integrated with aggressive reservation
strategies such as immediate restart, greedy backfilling and
selective preemption. The main contribution of this paper is
an analysis of the effects of three techniques that can be used
beyond the conventional migration schemes. Our simula-
tion results suggest that state-tracking migration with selec-
tive preemption entirely outperforms the others. We also ob-
serve that the overall performance of immediate restart strat-
egy combining to migration can be stably maintained un-
der various job lifetime distributions. Moreover, it is found
that performance would be improved by fitting jobs ruled
by the immediate restart strategy rather than queued jobs
into the void-intervals under the state-tracking migration
scheme.
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1 Introduction

Currently a high level of interest is being generated through
the development of a wide and varied range of distributed
computing systems (DCS), such as Cloud, Grid, and Peer-
to-Peer computing. In the general paradigm of job allocation
under the DCS model, heterogeneous-capable resources are
assigned to individual jobs with various requirements. Thus,
load balancing plays a special role in the operation of ex-
tremely large resource-oriented computing applications [1].
One challenging issue is that resource failures are inevitable
due to dynamic nature of DCS. To overcome this prob-
lem, most of distributed computing products or platforms [2]
have adopted various types of migration based allocation as
a leading risk-resilient policy.

So far, in order to reduce delays potentially imposed
by inherited reallocation property of migration, void-filling
algorithms, preemption schemes and check-pointing skills
based migration mechanisms have been proposed as sup-
plementary techniques. Unlike non-filling scheduling algo-
rithms [3], the void-filling allocation schemes [4] usually
provide better utilization, however they have a much longer
scheduling time. The preemptive policies aim at reducing
the high average slowdowns for the short jobs without sig-
nificant degradation to long jobs. Hence, job preemption has
been often assumed to prevent starvation and to improve the
average turnaround time in many literatures [5–7]. However,
most of these studies did not consider various lifetime distri-
butions of jobs and limited the number of possible preemp-
tions. Furthermore, it has been proved as NP-completeness
to solve the deadline scheduling problem in non-preemptive
disciplines even though all jobs have the same release time
and deadline in offline mode (i.e., batch scheduling). The
application-level check pointing techniques discussed in [8]
were also used for maintaining jobs’ states, such as a re-
maining execution length and a failure occurrence under
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the migratable and malleable job model. However, addi-
tional migration costs imposed by frequent job state traces
and data movements have not been significantly investigated
with various migration strategies.

From the results of the vast research addressing numer-
ous variants of the migration policy in DCS, we observe a
few key problems as follows. First, each resource reserva-
tion request for the job migration tends to be individually
processed in a greedy manner. Besides, the effects of pre-
emptive migration still remain uncertain, resulting in that
the delayed job execution frequently occurs due to the dif-
ference of jobs’ importance. More significantly, few works
have focused on how to leverage the low complexity of of-
fline algorithms and the high flexibility of online algorithms.

The primary contributions of this work are as follows:

• Proposal of novel space sharing strategies called ‘ag-
gressive reservation’ for maximizing the efficiency of re-
source usage under the model of migratable and malleable
jobs,

• Integrating a messy genetic algorithm based batch mode
scheduling with each of aggressive reservation strategies
for guaranteeing robustness and flexibility of schedule as
well as for reduction of potential delays occurred by mi-
grations,

• Evaluation of the impact of each strategy on overall
performance metrics with increasing offered workloads,
inter-job fairness under different job categories and cost
effectiveness in average utilization.

The rest of the paper is organized as follows. Section 2
describes mainly observed problems in the traditional job
migration and discusses how to predict the runtime under
the state-tracking migration scheme. In Sect. 3, we pro-
pose three aggressive reservation strategies based on differ-
ent technical disciplines. We present a messy genetic algo-
rithm as a batch mode scheduling framework and propose
how to merge it with our strategies in Sect. 4. Simulations
are conducted and results are discussed with various perfor-
mance aspects in Sect. 5. Finally, we conclude the paper in
Sect. 6.

2 Problem description

In this section, we first describe main assumptions and prob-
lems fundamentally used throughout this paper. Then we
propose how to estimate the expected runtime under the
state-tracking migration scheme.

2.1 Resource failure prediction

Typically, resource availability can be unexpectedly fluctu-
ated over time, so that a failure of resource is one crucial

part in the distributed computing environments. Our predic-
tion algorithm for failure probability is modeled by the intu-
ition that a failure may occurs if a guaranteed duration in re-
source availability does not averagely satisfy a specific level
of demanded completion time of a job. Moreover, we con-
sider that a resource failure follows the exponential failure
law having e−λt as the hazard function [9]. Therefore, a fail-
ure probability of job i being assigned to resource j , Pi,j ,
is decided by the difference between service demand value
(SDV i ) and resource availability level (RALj ) as follows:

Pi,j =
{

0 if SDV i ≤ RALj

1 − e−λt (SDV i−RALj ) if SDVi > RALj
, (1)

where t represents an instant in time and λ denotes a failure
coefficient. We assume that SDV i is given when a job i is
submitted. The variation of RALj over some future time in-
terval can be estimated by aggregated time series prediction.
Hence, a failure probability between a job and a resource
can be achieved at any time. Additionally, we suppose that
a scheduler becomes aware of a failure of any jobs within a
negligible amount of time. Therefore, each resource is char-
acterized by the resource availability and a sequence of fail-
ure probabilities over time in the resource failure prediction
model.

2.2 Delay model in job migration

The conventional job migration schemes include unavoid-
able delays owing to their inherited disadvantages of requir-
ing additional migration overheads and of allowing the wast-
ing time slots between jobs being assigned at resources. Fig-
ure 1 shows three major cases of migration delay such as
job restart delay, inter-job delay, and delayed job execution
where job i is terminated at resource x, Rx , due to an un-
expected failure, so that it is migrated to resource y, Ry .
Each of them seriously leads to an increase in makespan or
a decrease in average utilization. In particular, one critical
shortcoming is that the inter-job delays and delayed job ex-
ecutions can induce overestimation of utilization.

Problem 1 (Delays of migrant jobs) The occurrence of
these inevitable delays in the migration based job allocation
results in further fragmentation of available power of re-
sources. Moreover, it could potentially waste idle time slots
in a given scheduling duration, due to unpredictable failures
of any resources during executing jobs.

Consequently, reducing such delays at each resource will
be greatly beneficial to the performance improvement in as-
pect of overall scheduling quality.

2.3 State-tracking migration scheme

To reduce the job restart delay, we first adopt a state-tracking
migration scheme (STMS) [10] which reactivates an only
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Fig. 1 Three delay cases of
migration based re-dispatching:
ts , tf , and tc denote a start time,
a failure time, and a completion
time, respectively

Fig. 2 High level description of
PET estimation in STMS: tt
represents a termination time

Table 1 Notations

Symbol Description

Rx a resource x

RAx availability of Rx

Px a failure probability of Rx

RJi,x a remaining size of job i failed at Rx

JDi a data size of job i

ET i,x the execution time of job i assigned to Rx

SOi,x state-tracking overheads of job i at Rx

DMi,x,y data movement delay of job i from Rx to Ry

ABx,y average bandwidth between Rx to Ry

residual job at a point of failure unlike the traditional state-
less migration scheme [11]. In this approach, we assume that
a job is re-dispatched to a more-capable backup resource if a
failure occurs during job execution. Furthermore, the current
states of job execution, such as an elapsed time and a failure
time, are periodically traced by a state-tracking server using
the application-level check pointing technique [12]. So, the
dispatcher can instantly recognize a failure occurrence.

For clarity, main notations used in STMS’s runtime esti-
mation are summarized in Table 1.

2.3.1 Runtime estimation algorithm

To calculate makespan, average utilization, and the other
performance metrics of each schedule generated by the dis-
patcher, firstly it is necessary to estimate the expected run-
time of each job allocated by STMS under fluctuated re-
source availability.

Hence, we discuss how to estimate the probabilistic ex-
ecution time (PET) of a job controlled by STMS as de-
picted in Fig. 2. Figure 2 shows that job i is reallocated

from Rw to Rx and is then migrated again to Ry , when
a failure is detected at tf . Thus, Rx is responsible for
executing the remaining size of job i from Rw , RJi,w ,
which is equal to ‘(a given length of job i—observed run-
time by the state traces)’. By definition above, ET i,x is
calculated by ‘RJi,w/RAx ’. We then assume that a fail-
ure is uniformly distributed, so that the average waste
time is ‘ET i,x/2’ in case of one failure. The job’s run-
time is also associated with two failure probabilities of Rw

and Rx denoted by Pw and Px , respectively. As shown
in Fig. 2, the resource failure impact on job execution
in terms of PET can be considered as the sum of two
parts: PET(i, x;y) := expected execution time (eetx,y) +
expected waste time (ewtx,y).

eetx,y = (tt − ts) = Pw · {(1 − Px) · (ET i,x + SOi,x)}, (2)

ewtx,y = (tc − tt )

= Pw ·
{
Px ·

(
ET i,x

2
+ SOi,x + DMi,x,y

)}
, (3)

where eetx,y is particularly influenced by SOi,x that can be
derived by ‘(number of state traces × its unit overhead)’. In
case of ewtx,y , it is also required to consider DMi,x,y , which
is computed as ‘(tc − tf ) = (RJi,w + JDi )/ABx,y ’.

2.3.2 Pessimistic approach in PET prediction

The proposed prediction algorithm is based on the point-
wise approach where once a schedule is decided by a dis-
patcher, any degradation of service provisioning level should
be tolerated although some performance related factors are
unexpectedly changed. Therefore, an error margin is possi-
bly added to the job’s runtime prediction. Namely, this run-
time estimation is based on the predicted allocation model;
thus, it can be a type of pessimistic runtime anticipation of
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Fig. 3 Immediate restart with
STMS

Fig. 4 Greedy backfilling for a
new job in the queue

each job. To avoid unacceptable delays, potential inaccuracy
of predicting the PET in STMS must be subject to the fol-
lowing equation:

Condition 1 ‘pessimistically expected runtime ≤ α× de-
manded flow time of a job’.

Based on Condition 1, we can identify the acceptable
number of failures or migrations by adjusting a value of α,
an overestimation factor. Furthermore, we need to consider
how this pessimistic approach influences to waiting jobs in
a queue (future jobs) in terms of delays.

Problem 2 (Delays of queued jobs) This limitation caused
by the above approach may impose long ready time to future
jobs in a queue. Namely, the STMS based scheduler would
leave the free time slots of resources idle even though there
were many waiting queued jobs.

3 Aggressive reservation strategies

In this section, we propose three aggressive reservation
strategies which are separately operational with the STMS
based job allocation in order to resolve the Problems 1 and 2.
The proposed methods are based on different technical ap-
proaches such as delay avoidance, greedy backfilling, and
job preemption in order to assess job’s eligibility.

3.1 Immediate restart strategy

In contrast to STMS, a failed job is re-dispatched to the same
resource after resource availability increases to a sufficient
level in this strategy. Here, this fault-tolerant re-dispatching
rule is called an immediate restart strategy (IRS). Our first
idea is to integrate STMS with IRS (IR-STMS). Figure 3

shows that any potential gaps in time between jobs can be
filled with the short jobs executed by IRS. Hence, we expect
that IR-STMS can be used as an inter-job delay guaranteed
technique. As shown in Fig. 3, jobs i, j , and k are reallo-
cated at the same resource, respectively as soon as they meet
a failure. We assume that the amount of time of recovering
resource availability from a specific failure is negligible in
IRS.

In IRS, eet and ewt can be estimated as ‘eetx,x = (tc −
tt ) = ET i,x ’ and ‘ewtx,x = (tt − ts) = Px · (ET i,x/2)’, re-
spectively by the same manner as discussed in Sect. 2.3.
Therefore, if there are n unexpected failures for processing
a job i under IRS, we can obtain a PET for job i by

PET(i, x;x) = ET i,x +
n∑

f =1

P
f
x · ET i,x

2
, (4)

where P
f
x represents the f th failure probability of Rx .

We will present details of how to integrate STMS with
IRS in Sect. 4.

3.2 Greedy backfilling strategy

In the conservative backfilling scheduling [13], after jobs are
actually scheduled, they may be backfilled by a new job in
the queue if some valid void-intervals are found. Thus, it has
been expected that the backfilling algorithm guarantees start
times of late jobs. However, rather it should be considered
as a potential bonus according to our thorough observation.
Due to the drawback of existing backfilling, we improve it
with the discipline of weighted-shortest expected process-
ing time (WSEPT) under STMS (GB-STMS). A main pur-
pose of greedy backfilling strategy (GBS) is fitting as many
small jobs as possible into void-intervals (inter-job delays)
occurred by lots of migrations. Accordingly, we set the min-
imization of weighted flow time as the objective of WSEPT.
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Fig. 5 Selective preemption for
a migrant job

As depicted in Fig. 4, after a batch of jobs is allocated
to some resources, the dispatcher scans the job ready queue
for selecting a sufficiently small job according to WSEPT
when some slacks are found. Then it immediately assigns
a job one by one instead of aggregating small jobs, if such
conditions are satisfied as follows:

Condition 2 A length of void-interval (denoted as �vi in
Fig. 4) must be larger than or at least same as the length
of selected job (Js ). Furthermore, Js should not delay the
previously running job (Jp) at a backup resource.

Since IRS is assumed to be applied to estimate the ex-
pected runtime of Js for selecting the mostly appropriate
job to the objective of WSEPT, the PET of Js can be es-
timated by (4). We also suppose that a demanded deadline
of Jp is known when it is submitted. In this strategy, each
reservation request for a new job is individually processed
in a greedy and non-preemptive manner. So, it may be espe-
cially effective when the number of small jobs is dominant
in the given workloads. Furthermore, it can proceed until the
end of executing all jobs previously assigned to resources or
before the next scheduling cycle starts. Then the rest of jobs
in the job ready queue will be included in a new batch of the
next scheduling cycle.

3.3 Selective preemption strategy

A basic concept of selective preemption strategy (SPS) is to
avoid the delayed job executions (i.e., starvation) occurred
by frequent migrations. More specifically, our approach ex-
tends the ‘immediate service’ [6] in three directions as fol-
lows: (1) We consider how to adaptively process a migrant
job without compromising a previously running job’s dead-
line requirement; while, the authors in [6] addressed how to
reduce the number of late jobs by dealing with queued fu-
ture jobs. (2) A job suspension criterion proposed here is
based on the expected runtime which is calculated by the
PET estimation method, instead of using the total accumu-
lated runtime. (3) This strategy does not limit the number of
suspensions; namely, we use a preemption factor to provide
tunability in SPS by controlling a rate of suspension.

Figure 5 shows one example of how SPS can be applied
in the STMS based job allocation (SP-STMS). Suppose that

a migrant job, Jm, is aborted at time tf due to a failure and
then it is moved to a backup resource, Ry . Thus, Jm should
compete with previously executed or reserved job, Jp , at Ry

(i.e., race condition). At this time, two preemption priorities
of Jm and Jp are compared. The preemption priority, PP, is
computed by considering the expected remaining length and
deadline of both jobs as follows:

PP(Jm) = tmw + tmr

tmr
, (5)

where tmw represents the time Jm has to be waited for re-
allocation, when it is preempted by Jp . tmr is the expected
remaining time of processing Jm and is calculated by the
PET estimation. PP(Jp) is also derived in the same way as
PP(Jm). Next, the dispatcher needs to decide whether Jm is
suspended or preempts Jp by using a preemption factor (PF)
which can be defined as ‘PF = PP(Jm)/PP(Jp)’. If the fol-
lowing condition is satisfied, then Jm preempts Jp .

PP(Jp) · c < PP(Jm) = PF > c. (6)

In (6), c should be a variable (termed ‘preemption coeffi-
cient’) since each job has a different remaining time to pro-
cess as well as a different deadline. Jp should be waited for
the next time slot until PF is equal to or smaller than c. In
this strategy, if one is suspended then its preemption pri-
ority is increased; while, a preemption priority of running
job is decreased with the same rate of the suspended job at
a unit time. Therefore, execution of the two jobs can alter-
nate as shown in Fig. 5, when a value of PP(Jm) is close to
PP(Jp)’s.

In order to identify the adaptive benefit from each strat-
egy, we then propose a messy genetic algorithm (mGA)
based allocation framework which operates under STMS.

4 mGA based allocation framework

We consider how to achieve the optimal or near-optimal
mapping between jobs and resources under STMS in an
efficient manner. Since STMS generally requires non-
polynomial complexities, we use mGA [14] which can pro-
vide not only a special way of encoding a given problem but
also very tractable search operations within extremely huge
search space for satisfying specific performance criteria. In
this section, we discuss three important parts of mGA: an
encoding schema, search operations, and a fitness function.
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Fig. 6 Evolutionary search
operations in mGA

4.1 Encoding schema used in mGA

In mGA, first and most importantly, an encoding schema
should be designed before running genetic operations be-
cause it offers a way to define a problem that one focuses.
In contrast to the traditional GAs using binary code, mGA
provides a more tractable code comprising one dimensional
string such as (position, attribute) [11]. This string is es-
pecially suitable for constructing the scheduling problem.
Thus, the resource allocation to a job can be expressed as
a gene such as (job index, resource index), regardless of
the used scheme. We suppose that five jobs are waiting
to be scheduled and three resources are available at this
time. Thus, a schedule σ , referred to as a solution in the
job assignment problem, can be defined by a set of 2-tuple
strings as follows: σ = {(1,3); (4,2); (3,3); (1,2); (4,4);
(5,2); (1,5)}. For example, job 1 has three resources in-
dexed by 3, 2, and 5. This means that job 1 will be executed
in order of appearance of resource index by STMS. Namely,
job 1 is first assigned to resource 3 and will be migrated to
resource 2. Then it will be finally completed at resource 5.
In case of job 3 and 5, they have only one resource indexed
by 3 and 2, respectively, so that they will be processed by
IRS. Therefore, any resources can be randomly assigned to
a particular job in this representation of schedule. In other
words, various combinations of resource indices could exist
for a particular job with different execution schemes such as
STMS and IRS.

4.2 Messy genetic search operations

A set of schedules (called chromosomes in mGA) is referred
to as a population. The messy genetic search technique
evolves an initial population of possible chromosomes into
the solution that can be obtained by recombination opera-
tions such as selection, cut-and-splices, and mutation, under
the principle of the survival of the fittest. Algorithm 1 shows
the overall procedure of mGA operations. This algorithm
starts with a set of contending trial solutions called the ini-
tial population, P(1). We then use the roulette wheel selec-
tion [1], where each individual chromosome C(i) is selected

Algorithm 1 Messy genetic search operations

1. Set g = 1 and generate an initial population P(1)

2. For g = 1 until the stopping criterion is satisfied
3. Evaluate P(g)

4. If the stopping criterion is satisfied, then stop
5. Select C(i) from P(g) by ‘psel(i) = fi/

∑
q=1∼k fq ’

6. Evolve C(i) to form P(g + 1) by using such
Cut-and-Splices and Mutation operations

7. Set g = g + 1
8. End

with a probability, psel(i), that is calculated by using a fitness
value of each C(i), fi , as follows: psel(i) = fi/

∑
q=1∼k fq ,

where k is the number of chromosomes in the current popu-
lation. Therefore, a chromosome with a high selection prob-
ability can have an opportunity to be evolved to the next
generation.

As illustrated in Fig. 6, with its predefined probability the
cut and splices then attempt to select a cut point in two chro-
mosomes (parents) one of which are chosen by the above
selection method from the gth population, P(g). So, each
parent is divided into two parts. These operations then re-
sult in two child chromosomes (offspring) by exchanging
the selected part with each other. In other words, they per-
form global search functionality. Next, the mutation oper-
ation swaps two genes selected by its given probability as
well within the offspring in order to search the local op-
timum. Through these evolutionary search operations, the
offspring are differently evolved in order to form the next
generation, P(g+1). Then, this algorithm proceeds until the
stopping criterion is satisfied. Typically, the mGA is termi-
nated when a predefined number of generations is achieved
or when a fitness value is reached to a certain level. For more
details on search operations, we refer to [14].

4.3 Designing of performance benefit

4.3.1 Fitness function

In the proposed allocation framework, we consider two ob-
jectives such as makespan ms and average utilization au as
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Table 2 Parameter
configuration adopted for the
performance evaluations

Parameters Values

Mean job arrival rate, Scheduling interval 1.67 jobs/sec, 1 hour

Job size, Batch size, Job data size 0.1–1 Mflops, 50, 300–1,000 MB

Resource availability, Average bandwidth 100–500 flops/sec, 10–50 Mbps

Overestimation factor, Preemption coefficient 1.75, 2.5

Population size, Maximum number of generations 30, 100

Cut-and-Splices probability, Mutation probability 0.18, 0.25

the performance benefit to be optimized. To achieve the bi-
criteria optimization, we need to transform different quan-
tities into the same domain in the form of combined fitness
function. We thus normalize ms and au of chromosome i by
their difference between the maximum value and the mini-
mum value, respectively as follows:

msi = msmax − msi

msmax − msmin
, aui = aumin − aui

aumax − aumin
, (7)

where msi and aui are normalized ms and au of chromo-
some i, respectively. Then a converged fitness for chromo-
some i, fi , is derived from (7) by using the concept of
weighted sum of objectives [9] as follows:

fi = (δ · msi ) + (ω · aui ) for δ + ω = 1. (8)

In (8), δ and ω specify scalar weights of each objective.
Hence, it allows the equitable comparison through achiev-
ing the tuned fitness between the two objectives. A larger
fitness value guarantees a better scheduling in terms of the
performance benefit.

4.3.2 Risk assessment factor for late jobs

Each job has its deadline constraint, so that a degree of risk
due to late jobs is generally evaluated by the job failure rate
(JFR) that is the average percentage of missed deadlines.
JFR assumes that all jobs are of equal criticality and re-
quire the same quality of services. However, the importance
of each job is differentiated by its deadline. Accordingly, it
is hard to expect that this factor could be suitable to rep-
resent risk (i.e., delay) resilience of a scheduling algorithm.
Therefore, we define an inter-job fairness (IJF) as a new met-
ric which describes how fairly a scheduling algorithm treats
each job within a batch. In this context, IJF is defined as ‘1 −
the standard deviation of JFR’.

IJF = 1 −
√∑n

i=1(ξi late jobs/ξi jobs − JFR)2

n
. (9)

In (9), n represents the number of batches and ξi denotes the
ith batch. JFR is a mean value of JFR. To assess a degree
of delays imposed by late jobs, we add the ‘1 − IJF’ as a
penalty function into the fitness function as follows:

fi = (δ · msi ) + (ω · aui ) + κ · (1 − IJF), (10)

where κ represents a negative coefficient.

4.4 Flexible scheduling acceleration

To be granted exclusive access to a resource partition (i.e.,
space sharing), jobs should be submitted to a batch sched-
uler and then held in a job ready queue until a sufficient
number of jobs become available to create a new schedule.
Accordingly, it is not feasible to perform mGA on a small
number of jobs. For this problem, we adopt the sliding win-
dow concept [1] as an alternative method that individually
assigns remaining jobs to the lightest loaded resources in
a manner of non-combinational scheduling algorithms, for
example Min-Min [9].

5 Simulation and discussion

In this section, we present the results of a trace-driven simu-
lation of four different STMS scheduling schemes discussed
above. To compare their various aspects of performance, we
consider six metrics such as makespan, average utilization,
average throughput, JFR, IJF, and cost effectiveness. In the
simulation, resource availability and job sizes are measured
by million floating point operations (Mflops). Furthermore,
every single point of metrics in the plots has been exten-
sively computed with 30–50 resources and 2,000–10,000
jobs. Table 2 shows the parameter configuration mainly used
in this simulation.

5.1 Overall performance comparison

In order to examine the overall trends of each scheduling al-
gorithm as the number of offered workloads increases, we
have implemented a trace-driven simulation of 50 resources
and 2,000–10,000 jobs. As indicated in Fig. 7, SP-STMS av-
eragely achieves better performance in its makespan, aver-
age throughput, and JFR than IR-STMS’s as the job’s bursti-
ness increases. It means that preventing the delayed job exe-
cutions is a more effective technique than reducing the inter-
job delay in the migration based job allocation. However,
IR-STMS shows the best case in the average utilization be-
cause sharing the inter-job delays with the IRS-ruled jobs
can maximize the efficiency of resource usage. Moreover,
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Fig. 7 Overall performance comparison

it is found that GB-STMS is entirely outperformed by IR-
STMS. Namely, reserving inter-job delay for IRS-ruled jobs
can be a more appropriate solution rather than fitting new
jobs from a queue to the void-intervals for minimization of
the completion time of jobs.

All schemes show that their average throughput gradually
decreases; while, they have steady-state curves in JFR. In
case of STMS, it demonstrates the worst performance due
to its lack of flexibility to changes in resource availability as
discussed above. Each trace of a particular migration scheme
provides its fine-grained performance trend, so that it is very
useful not only to comprehend entire system characteristics
but also to anticipate system quality over some future time
interval.

5.2 Behavior analysis under various job lifetime
distributions

As presented in the archive of real workload logs [15], there
are four types of jobs according to the length of a job: very

Table 3 Classes of job lifetime distribution

Short-lived : Long-lived

Class 1 8 : 2

Class 2 5 : 5

Class 3 2 : 8

short, short, long, and very long. However, in this simulation
our objective is to investigate potential influences of differ-
ent job lifetime distributions rather than individual job sizes
on scheduling performance. As a reason of that, we classify
the job lifetime distribution to 3 classes as shown in Table 3.
Here, we suppose that the length of a short job is less than
0.15 Mflops and the size for a long one is in the range of
0.85 and 1 Mflops. The number of jobs and resources are
considered to be fixed as 4,000 and 30, respectively.

Figure 8 demonstrates how strongly each scheme can re-
spond to the different job lifetime distributions in aspects of
three major metrics such as makespan, average utilization,
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Fig. 8 Analysis of scheduling behavior under three job lifetime distributions

and IJF. First, IR-STMS shows a much flexible ability in
makespan compared to the other schemes. However, this re-
sult is slightly different from the overall trend on makespan
shown in Fig. 7(a). This is due to the fact that IR-STMS
possibly have more opportunities to fit the IRS-ruled jobs
into potential void-intervals as the number of short jobs in-
creases. On the other hand, SP-STMS has slightly higher
makespan than IR-STMS does. Because of the frequent mi-
grations, there is a certain degree of competition between
jobs (Jm and Jp) to occupy the resource. So, this scheme can
stay in a state of balance even though the number of long-
lived jobs increases. With the same reason as IR-STMS, GB-
STMS’s makespan is better than STMS’s. Next, three mi-
gration schemes except for STMS start from more than 90
percent average utilization in the class 1. However, all strate-
gies generally suffer from degradation of average utilization
as a ratio of large jobs increases from 20 to 80 percent. In
particular, STMS experiences 27 percent reduction; while,
this metric is stably maintained by IR-STMS and SP-STMS
regardless of the classes. Although GB-STMS is designed
to attempt to reserve some potential void-intervals for some
future jobs, its effectiveness is less than IR-STMS’s. In case
of IJF, one interesting observation is that SP-STMS entirely
outperforms the other schemes. Since a job to be executed is

fairly selected by competition based on the preemption pri-
ority, SPS can guarantee IJF regardless of the classes. On the
other hand, IR-STMS adaptively merges the IRS-ruled jobs
and the STMS-ruled jobs in the form of batch to optimize
the performance benefit. Owing to this inherited principle,
IR-STMS seems less sensitive to changes in the job lifetime
distribution.

As discussed, the average utilization can be overesti-
mated by including unavoidable idle time slots. This prob-
lem is also induced by inaccurately estimating runtimes
of jobs with insufficient information regarding scheduling
conditions and requirements. To cope with the first issue,
we propose to combine the aggressive reservation strategies
with STMS. However, relation between the problem and the
second reason still remains uncertain.

5.3 Impact of inaccurate PET estimation on the inter-job
fairness

Although the migration schemes has been designed for mit-
igating harmful effects of late jobs, JFR may not be a suit-
able criterion to evaluate how jobs with various importance
are fairly executed within a batch. Moreover, previous mi-
gration models tend to depend on an impractical assump-
tion that a runtime generally would be estimated by users
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Fig. 9 Impact of inaccurate PET estimation

prior to scheduling. However, this simplification is overly
optimistic in the sense that user’s expected runtime may be
almost close to a real processing time.

With 4,000 jobs and 30 resources, we have conducted a
measurement to investigate how flexibly or stably each mi-
gration algorithm can maintain IJF according to a degree of
inaccuracy of PET. To this end, we classify a degree of inac-
curacy in the PET estimation into three types by introducing
the over estimation factor α as follows:

• Optimistic prediction case: 1 ≤ α < 1.5
• Realistic prediction case: 1.5 ≤ α < 2
• Pessimistic prediction case: 2 ≤ α < 3

As depicted in Fig. 9, we observe that IR-STMS and SP-
STMS have a similar pattern of curves and they result in
relatively high IJF compared to GB-STMS and STMS.

The result of IR-STMS represents an improvement 6.8
percent over STMS in case of optimistic prediction. In con-
trast to the result described in Fig. 8(c), IR-STMS always
performs better than SP-STMS. To be precise, the pes-
simistic or realistic prediction case produces much more
race conditions to be resolved by SPS. Thus, there are lots
of negative effects on SP-STMS’s IJF due to the inaccurate
PET estimation. In particular, little improvement in the IJF
is found in GB-STMS after α is smaller than 1.5. As a de-
gree of inaccuracy in the PET estimation increases, lots of
early completed jobs occur. So, a batch scheduling can be
finished earlier in order to accommodate a new batch. Con-
sequently, jobs in the ready queue lose an opportunity to oc-
cupy some idle time slots. For this reason, GB-STMS shows
low flexibility in the IJF. From this result, we realize that
more accurate prediction of PET leads to more robust IJF.
However, the “quality” of runtime estimation is not defined
by how close it is to the actual processing time. Rather its
excellence can be evaluated by how much better it is com-
pared to the average estimation.

5.4 Cost-effectiveness of resource usage

As seen in Figs. 7, 8, and 9, we discuss the performance be-
havior of user’s perspective. In this section, we now turn our
attention to resource provider’s perspective. With the same
simulation configuration as addressed in Sect. 5.3, we have
evaluated the resource usage cost and the cost effectiveness
of each migration scheme according to the following met-
rics:

ci =
∑m

k=1(RAk · Fc(t
k
c ))

m
, (11)

where ci and tkc represents the cost overhead of a particu-
lar migration scheme i and the completion time in resource
k, respectively. The total number of assigned resources is
assumed to be m. Moreover, we suppose that the usage
cost of occupying one resource follows a concave function,
Fc(·) that has a monotonically non-decreasing curve over
time [16]. Thus, the cost overheads are proportional to accu-
mulated resource occupation time and average provisioning
level of resource availability. Accordingly, we then have the
cost effectiveness of migration scheme i, cei as

cei =
(

νi · cs

ci

− νs

)
· 100(%), (12)

where cs denotes the cost overhead under STMS. νs and νi

are and the average utilization when STMS and a migration
scheme i are respectively applied.

Figure 10(a) is a plot of the average cost overheads
that are required on each resource for different migration
schemes. Since IRS-ruled jobs are repeatedly assigned to
the same (faulty) resource when a failure occurs, they do
not have any chance to utilize a more capable or stable re-
source. Hence, there is a tendency for the IRS-ruled jobs
to be easily failed compared to the STMS-ruled jobs. Con-
sequently, cost overheads of IR-STMS are higher than SP-
STMS’s and GB-STMS’s. Even though STMS does not have
any burdens imposed by IRS and is somewhat free from
the job restart delays, it incurs unnecessary costs for mi-
grations due to the absence of any reservation method. Fig-
ure 10(b) shows that how much improvement in average uti-
lization per unit cost each migration scheme can guarantee
compared to STMS’s. Since the most expensive approach is
STMS, the cost effectiveness of the other schemes is nor-
malized by STMS’s. As discussed in Figs. 7(b) and 8(b),
IR-STMS demonstrates the best performance in average uti-
lization. However, owing to its large cost overheads, the cost
effectiveness with regard to the average utilization is not
much higher than the other schemes. From this result, we
observe that three migration schemes achieve 35, 54, and
49 percent improvements, respectively in the cost-effective
resource usage.
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Fig. 10 Cost effectiveness of
resource usage

6 Conclusion

This paper has reviewed four migration schemes we devel-
oped to enhance the job allocation performance in DCS. We
started with an analysis of three commonly occurred prob-
lems: job restart delay, inter-job delay, and delayed job exe-
cution. Then we discussed how to estimate the expected run-
time with our resource failure model and proposed three ag-
gressive reservation strategies mentioned above. To combine
each strategy into the batch mode scheduling, we also pro-
posed the mGA based allocation framework. One key objec-
tive of this research is to investigate how effectively STMS
with each strategy reactivates a failed job to reduce the three
inevitable delays. As the second contribution of this paper,
we observed how the proposed migration schemes take ad-
vantage of idle time slots for IRS-ruled jobs or new jobs
to optimize the performance benefit without compromising
IJF.

Summarized below are the major contributions and re-
search results in this paper.

• SP-STMS entirely outperforms the other schemes when
the amount of offered jobs increases. In general, prevent-
ing the delayed job executions with SP-STMS could be
a better solution rather than reducing the inter-job delays
by using IR-STMS or GB-STMS.

• IR-STMS has shown less sensitive behaviors than SP-
STMS and GB-STMS when the long jobs are dominant in
the given workload. Despite the inaccurate prediction of
PETs, allocating the IRS-ruled jobs and the STMS-ruled
jobs together has turned out to be the best approach in
terms of IJF. On the whole, the performance would be
also improved by fitting IRS-ruled jobs rather than new
jobs into the void-intervals under STMS.
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