
C.H. Youn (March 21, 2013)

1

Service Oriented Computing (6)

Chan-Hyun YOUN

Dept of Electrical Engineering, KAIST

C.H. Youn (March 21, 2013)

2

Process/Thread/VM Scheduling.

3

C.H. Youn (March 21, 2013)

Recap: Process State
 As a process executes, it changes state

 new: The process is being created.
 running: Instructions are being executed.
 waiting: The process is waiting for some event to occur.
 ready: The process is waiting to be assigned to a process.
 terminated: The process has finished execution.

4

C.H. Youn (March 21, 2013)

Recap: Process Schedulers
 Long-term scheduler (or job scheduler) – selects which process

should be brought into the ready queue.
 Invoke infrequently (seconds, minutes)
 Control the degree of concurrency

 Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU.
 Invoke frequently (millisecond), must be fast
 Optimize throughput, average response time, slowdown, revenue, etc
 Slowdown is a normalized queuing delay w.r.t. exec time

5

C.H. Youn (March 21, 2013)

Recap: Thread Scheduling Options
 M-1 model (user-level): portable, easy to programming, but no concurrency
 1:1 model (kernel-level): each user level thread is known to the kernel and all threads

can access the kernel at the same time but, hard to program. Win32 put limits on the
number of threads

 M:M model (2-level model): minimizes programming effort while reducing the cost
and weight of each thread.

Solaris 5.2 to 5.9, NetBSD2 to 4, FreeBSD 5 and 6

Linux, Solaris 5.9 and later, NetBSD5, FreeBSD 8

6

C.H. Youn (March 21, 2013)

Scheduling Disciplines
 A set of rules based on which processes/threads are scheduled
 Performance metrics:

 Throughput: the amount of work to be finished in a time unit
 Utilization: the fraction of a system is busy with useful work
 Turnaround time: the time from start to completion, including

 waiting time to be loaded into memory,
 waiting time in ready queue,
 execution time
 Blocked time waiting for an event, for example waiting for I/O

 Response time: the time from arrival time of a request to the time its
response is produced

 Waiting time: the delay time in Ready queue, directly impacted by
scheduling discipline

 Fairness: each process/thread gets fair share of resources (cpu time, etc)
 Deadline in real-time scheduling
 etc

 Maximize/minimize metrics,
 Bounded vs average result; Deterministic vs stochastic

7

C.H. Youn (March 21, 2013)

CPU-I/O bursts
process execution consists of a cycle of
CPU execution and I/O wait
 different processes may have different

distributions of bursts
CPU-bound process: performs lots of
computations in long bursts, very little I/O
I/O-bound process: performs lots of I/O
followed by short bursts of computation

 ideally, the system admits a mix of CPU-
bound and I/O-bound processes to
maximize CPU and I/O device usage

8

C.H. Youn (March 21, 2013)

Burst distribution
CPU bursts tends to have
an exponential or
hyperexpo distribution

 there are lots of little bursts,
very few long bursts

 a typical distribution might
be shaped as here:

What does this distribution pattern imply about the
importance of CPU scheduling?

9

C.H. Youn (March 21, 2013)

Preemptive vs. nonpreemptive scheduling
CPU scheduling decisions may take
place when a process:

1. switches from running to waiting state.
e.g., I/O request

2. switches from running to ready state.
e.g., when interrupt or timeout occurs

3. switches from waiting to ready. e.g.,
completion of I/O

4. terminates

scheduling under 1 and 4 is nonpreemptive
 once a process starts, it runs until it terminates or willingly gives up control

simple and efficient to implement – few context switches
examples: Windows 3.1, early Mac OS

all other scheduling is preemptive
 process be "forced" to give up the CPU (e.g., timeout, higher pri process)

more sophisticated and powerful
examples: Windows 95/98/NT/XP, Mac OS-X, UNIX

10

C.H. Youn (March 21, 2013)

Scheduling algorithms
 First-Come, First-Served (FCFS)

 CPU executes job that arrived earliest
 Shortest-Job-First (SJF)

 CPU executes job with shortest time remaining to completion*
 Priority Scheduling

 CPU executes process with highest priority
 Round Robin (RR)

 like FCFS, but with limited time slices
 Multilevel queue

 like RR, but with multiple queues for waiting processes (i.e.,
priorities)

 Multilevel feedback queue
 like multilevel queue, except that jobs can migrate from one queue to

another

11

C.H. Youn (March 21, 2013)

Priority Scheduling
Each process is assigned a numeric priority

 CPU is allocated to the process with the highest priority

 Fixed vs dynamic priority
 Priorities can be external (set by user/admin) or internal (based on

resources/history)
 can be made fair using aging – as time progresses, increase the priority

(dynamic priority)

 May be preemptive or nonpreemptive
 nonpreemptive – once CPU given to the process it cannot be preempted

until completes its CPU burst
 preemptive – if a new process arrives with CPU burst length less than

remaining time of current executing process, preemp

 Fixed priority preemptive scheduling has no particular
advantage in terms of throughput over FIFO scheduling

 Not fair: starvation is possible, low pri processes may never
execute

12

C.H. Youn (March 21, 2013)

Priority scheduling example
Process Burst Time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

assuming processes all arrived at time 0, Gantt Chart for the schedule is:

average waiting time: (6 + 0 + 16 + 18 + 1)/5 = 8.2
average turnaround time: (16 + 1 + 18 + 19 + 6)/5 = 12

P5 P3P2

61 160

P4

18 19

P1

13

C.H. Youn (March 21, 2013)

Shortest-Job-First (SJF) scheduling
More accurately, Shortest Next CPU Burst (SNCB)

 associate with each process the length of its next CPU burst
(???)

 use these lengths to schedule the process with the shortest
time

 SJF is priority scheduling where priority is the predicted
next CPU burst time

SJF can be preemptive or nonpreemptive
 Preemptive SJF

– known as Shortest-Remaining-Time-First (SRTF)

If you can accurately predict CPU burst length, SJF is optimal
 it minimizes average waiting time for a given set of processes
 Waiting time and response time increase as the process’ computational

requirements increase

14

C.H. Youn (March 21, 2013)

Nonpreemptive SJF example
Process Arrival Time Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Gantt Chart for the schedule is:

P1 P3 P2

73 160

P4

8 12

average waiting time: (0 + 6 + 3 + 7)/4 = 4
average turnaround time: (7 + 10 + 4 + 11)/4 = 8

15

C.H. Youn (March 21, 2013)

Preemptive SJF example

P1 P3P2

42 110

P4

5 7

P2 P1

16

average waiting time: (9 + 1 + 0 +2)/4 = 3
average turnaround time: (16 + 5 + 1 + 6)/4 = 7

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

Gantt Chart for the schedule is:

16

C.H. Youn (March 21, 2013)

SJF: predicting the future
In reality, can't know precisely how long the next CPU burst will

be
But can estimate the length of the next burst

 simple: same as last CPU burst
 more effective in practice: exponential average of previous

CPU bursts   nn1n 1t  

where: n = predicted value for nth CPU burst

tn = actual length for nth CPU burst

 = weight parameter (0 ≤  ≤ 1, larger  emphasizes last burst)

17

C.H. Youn (March 21, 2013)

Exponential averaging
consider the following example, with  = 0.5 and
0 = 10   nn1n 1t  

18

C.H. Youn (March 21, 2013)

Round-Robin (RR) scheduling
RR = FCFS with preemption

 time slice or time quantum is used to preempt an executing process
 timed out process is moved to rear of the ready queue

 some form of RR scheduling is used in virtually all operating systems

if there are n processes in the ready queue and the time quantum
is q
 each process gets 1/n of the CPU time in chunks of at most q time units

at once
 no process waits more than (n-1)q time units.

19

C.H. Youn (March 21, 2013)

RR example

average waiting time: (6 + 2 + 3)/3 = 3.67
average turnaround time: (30 + 5 + 6)/3 = 13.67

Process Arrival Time Burst Time
P1 0 24
P2 2 3
P3 4 3

assuming q = 4, Gantt Chart for the schedule is:

P1 P1 P1

22 26 300 4 7 10 14 18

P1 P2 P3 P1 P1

20

C.H. Youn (March 21, 2013)

RR performance
Performance depends heavily
upon quantum size
 if q is too large, response time

suffers (reduces to FCFS)
 if q is too small, throughput

suffers (spend all of CPU's time
context switching)

 rule-of-thumb: quantum size
should be longer than 80% of
CPU bursts

 in practice, quantum of 10-100
msec, context-switch of 0.1-
1msec; CPU spends 1% of its
time on context-switch overhead

How to provide guarantee of fairness via RR??

21

C.H. Youn (March 21, 2013)

Summary of Basic Scheduling Algorithms

Scheduling
algorithm

CPU
Utilization Throughput Turnaroun

d time
Response
time

Deadline
handling

Starvation
free

First In First Out Low Low High Low No Yes

Shortest
remaining time Medium High Medium Medium No No

Fixed priority
pre-emptive
scheduling

Medium Low High High Yes No

Round-robin
scheduling High Medium Medium Low No Yes

22

C.H. Youn (March 21, 2013)

Multilevel Queue Scheduling
For situations in which processes can easily be classified
Combination of priority scheduling and other algorithms (often

RR)
 ready queue is partitioned into separate queues
 each queue holds processes of a specified priority
 each queue may have its own scheduling algorithm

(e.g., RR for interactive processes, FCFS for batch processes)

must be scheduling among queues

 absolute priorities

 (uneven) time slicing

23

C.H. Youn (March 21, 2013)

Multilevel Feedback Queue Scheduling
similar to multilevel queue but processes can move between the

queues
e.g., a process gets lower priority if it uses a lot of CPU time

process gets a higher priority if it has been ready a long time (aging)

example: three queues
 Q0 – time quantum 8 milliseconds
 Q1 – time quantum 16 milliseconds
 Q2 – FCFS

scheduling
 new job enters queue Q0 which is served RR

when it gains CPU, job receives 8 milliseconds
if it does not finish in 8 milliseconds, job is moved to queue Q1.

 at Q1 job is again served RR and receives 16 additional milliseconds
if it still does not complete, it is preempted and moved to queue Q2.

24

C.H. Youn (March 21, 2013)

Multiprocessor Scheduling
CPU scheduling is more complex when multiple CPUs are available
symmetric multiprocessing:

 when all the processors are the same, can attempt to do real load sharing
 2 common approaches:

separate queues for each processor, processes are entered into the shortest
ready queue

one ready queue for all the processes, all processors retrieve their next
process from the same spot

asymmetric multiprocessing:
 can specialize, e.g., one processor for I/O, another for system data

structures, …
 alleviates the need for data sharing

25

C.H. Youn (March 21, 2013)

Real-time Scheduling
hard real time systems

 requires completion of a critical task within a guaranteed amount of
time

soft real-time systems
 requires that critical processes receive priority over less fortunate ones

Delays happens:
when event occurs, OS must:

• handle interrupt
• save current process
• load real-time process
• execute

for hard real-time systems,
may have to reject processes
as impossible

Conflicts: Preemption of process running in kernel; Release resource hold
by low-priority processes, but needed by high-priority process

26

C.H. Youn (March 21, 2013)

Scheduling algorithm evaluation
Various techniques exist for evaluating scheduling algorithms

 Deterministic model, Simulation, Queueing Model, Implementation

Deterministic model
use predetermined workload, evaluate each algorithm using it
this is what we have done with the Gantt charts

Process Arrival Time Burst Time
P1 0 24
P2 2 3
P3 4 3

P1 P2 P3

24 27 300
FCFS:
average waiting time: (0 + 22 + 23)/3 = 15
average turnaround time: (24 + 25 + 26)/3 = 25

P1 P1 P1

22 26 300 4 7 10 14 18

P1 P2P3 P1 P1

RR (q = 4):
average waiting time: (6 + 2 + 3)/3 = 3.67
average turnaround time: (30 + 5 + 6)/3 = 13.67

27

C.H. Youn (March 21, 2013)

Scheduling algorithm evaluation (cont.)
Simulations

use statistical data or trace data to drive the simulation
expensive but often provides the best information

28

C.H. Youn (March 21, 2013)

Scheduling algorithm evaluation (cont.)
Queuing models

statistically based, utilizes mathematical methods
collect data from a real system on CPU bursts, I/O bursts, and

process arrival times

Little’s formula: N = L * W
where N is number of processes in the queue

L is the process arrival rate
W is the wait time for a process

under simplifying assumptions (randomly arriving jobs, random lengths):
response_time = service_time/(1-utilization)

powerful methods, but real systems are often too complex to
model neatly

Implementation, just build it!

29

C.H. Youn (March 21, 2013)

Scheduling Example: Solaris

utilizes 4 priority classes
each with priorities & scheduling algorithms

time-sharing is default
 utilizes multilevel feedback queue w/

dynamically altered priorities
 inverse relationship between priorities & time

slices (the higher priority, the smaller the time
slices)  good throughput for CPU-bound
processes; good response time for I/O bound
processes

interactive class same as time-sharing
 windowing apps given high priorities

system class runs kernel processes
 static priorities, FCFS

real-time class provides highest priority

30

C.H. Youn (March 21, 2013)

Scheduling example: Windows XP
Windows XP utilizes a priority-based, preemptive
scheduling algorithm

 multilevel feedback queue with 32 priority levels (1-15 are variable class,
16-31 are real-time class)

 scheduler selects thread from highest numbered queue, utilizes RR
 thread priorities are dynamic

priority is reduced when RR quantum expires
priority is increased when unblocked & foreground window

 fully preemptive – whenever a thread becomes ready, it is entered into
priority queue and can preempt active thread

31

C.H. Youn (March 21, 2013)

Scheduling example: Linux
Linux scheduler is preemptive, priority-based

 2 priority ranges: real-time (0-99) & nice (100-140)
 unlike Solaris & XP, direct relationship between priority and

quantum size
highest priority (200 ms)  lowest priority (10 ms)

 real-time tasks are assigned fixed priorities
 nice tasks have dynamic priorities, adjusted when quantum is

expired
tasks with long waits on I/O have priorities increased 

favors interactive tasks
tasks with short wait times (i.e., CPU bound) have priority

decreased

32

C.H. Youn (March 21, 2013)

Resource Alloc in VM
 Resource Management Guide of Vmwae ESX

 www.vmware.com/pdf/vi3_35/esx_3/r35/vi3_35_25_resource_mgmt.pdf

 Resource configuration for a VM
 Number of virtual CPUs

 In Vmware, equal share of CPU per vCPU by default. E.g a VM with
one vcpu is assigned half of the resources of a VM of 2 vcpus

 Reservation in absolute values: Amount of cpu in MHz and memory
in MB
 E.g. on a 2GHz cpu, reserve a VM with 512MHz
 Equal share per MB of VM: a VM with 8GB is entitled to eight times as

much mem as a 1GB VM
 Shares: entitlement in proportion to specified shared

 In Vmware ESX, high (2000 shares per vcpu, 20 shares per MB), normal (1000
shares per vcpu, 10 shares per MB), low (500 shares per vcpu, and 5 shares per
MB)

 A normal config of VM with 2 vcpus and 1GB should have 2x1000 shares of cpus
and 10x1024=20140 shares of mem

33

C.H. Youn (March 21, 2013)

VM Resource Alloc (cont’)

 Work conserving: Idle only iff there is no runnable vm
 Non work conserving:

 share are caps or limits.

34

C.H. Youn (March 21, 2013)

Proportional Share Scheduling
 In Vmware ESX, (“The CPU scheduler in Vmware ESX”)

 dynamic priority scheduling
 Priority is set to the ratio of consumed cpu resource to entitled

resource

35

C.H. Youn (March 21, 2013)

Credit Scheduling in Xen
 http://wiki.xensource.com/xenwiki/CreditScheduler.

 Comparison: www.hpl.hp.com/techreports/2007/HPL-2007-25.pdf
 Concepts:

 Weight: a VM with a weight of 512 will get twice as much cpu as a VM of
weight 256

 Cap: the maximum amount of cpu, in percentage of one physical cpu
 100 equiv to 1 pcpu, 50 is half a pcpu, 200 means 2 cpus

 Scheduling
 The scheduler transforms the weight into a credit allocation for each vcpu, using

a system-wide accounting thread. As vcpu runs, it consumes credit: in a period
of 10ms, the current running vcpu is debited 100 credits

 Negative credits means a priority of “over” its share. Otherwise, a priority of
“under”

 Periodically, when the sum of credits goes negative, he accounting thread gives
everyone more credits.

 Each CPU maintains a sorted queue of runnable vcpus in terms of their priority
 At each scheduling epoch (30ms), the accounting thread recomputes the credits

for each active VM.

