
C.H. Youn (March 14, 2013)

1

Service Oriented Computing (4)

Chan-Hyun YOUN

Dept of Electrical Engineering, KAIST

2

C.H. Youn (March 14, 2013)

Process and Thread

3

C.H. Youn (March 14, 2013)

Outline

 Process and Thread
 Abstraction of execution entity

 Software vs HW Implementation
 User-level and Kernel-level
 Hyper-threading and multi-core

4

C.H. Youn (March 14, 2013)

Process Model
 Process: a program in

execution
 IE to web browsing, outlook to

read email, word to write
reports

 Process is a full blown
virtual machine, defining its
own address space and
maintains running state
 Address space: the set of

memory locations that can be
generated and accessed
directly by a program;
enforced by hw for protection

 I/O part of the machine is
accessed through OS calls.

5

C.H. Youn (March 14, 2013)

Under the Hood
 Process Control Block (PCB): a key

data structure that maintains info
associated with each process:
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management info
 Accounting information
 I/O status information

6

C.H. Youn (March 14, 2013)

Process State
 As a process executes, it changes state

 new: The process is being created.
 running: Instructions are being executed.
 waiting: The process is waiting for some event to occur.
 ready: The process is waiting to be assigned to a process.
 terminated: The process has finished execution.

7

C.H. Youn (March 14, 2013)

Context Switch
 When CPU switches to

another process, the system
must save the state of the
old process and load the
saved state for the new
process.

 Context-switch time is
overhead; the system does
no useful work while
switching.

 Time dependent on
hardware support.

PCB

8

C.H. Youn (March 14, 2013)

Process Schedulers
 Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue.
 Invoke infrequently (seconds, minutes)
 Control the degree of concurrency

 Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU.
 Invoke frequently (millisecond) enough to provide a perception of

concurrent execution on single core system; must be fast
 Optimize throughput, average response time, slowdown, revenue, etc
 Slowdown is a normalized queuing delay w.r.t. exec time
 On multiprocessor or multi-core system, real concurrent execution

9

C.H. Youn (March 14, 2013)

Interprocess Communication (IPC)
 Processes are usually communicate by sending msgs back

and forth via the OS

 Processes can share a segment of physical memory by
mapping it to their address spaces
 data in the segment can be accessed by processes for faster IPC

10

C.H. Youn (March 14, 2013)

Thread and Multithreaded Process
 A thread of control is a seq of instructions being executed within

a process context. Each has its own logical control flow (pc)
 A multithreaded process has two or more threads within the same

context. They share code, data in heap, and kernel context(open
files, timers, etc)

 Each thread has its own id.

shared libraries

run-time heap

0

read/write dataThread 1 context:
Data registers
Condition codes
SP1
PC1

Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
VM structures
Open files
Signal handlers
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2 (peer thread)

11

C.H. Youn (March 14, 2013)

Logical View of Threads
 Threads associated with a process form a pool of peers.

 unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

12

C.H. Youn (March 14, 2013)

Process vs Threads
 Processes are typically independent, while threads

exist as subsets of a process
 Processes carry considerable state info, whereas

multiple threads within a process share state as well
as memory and other resources

 Processes have separate address space, whereas
threads share their address space

 Processes interact through system-provided IPC
 Context switching between threads is an order of

magnitude faster than context switching between
processes

13

C.H. Youn (March 14, 2013)

Why Multithreading
 Improve program structure

 e.g. producer-consumer problem
 Efficiency

 Creating a process calls into OS, which duplicates entire address space
 Synchronizing processes need to trap into the OS, too.
 Threads could be created in user-space
 Threads could be synchronized by monitoring shared variables

 Match multi-core and multiprocessor arch
 Improve application responsiveness

 overlapping I/O
 e.g. Multithreaded clients, fast file read/write

 asynchronous event handling
 e.g. network-centric server , GUI

14

C.H. Youn (March 14, 2013)

Outline

 Process and Thread
 Abstraction of execution entity

 Software vs HW Implementation
 User-level and Kernel-level
 Hyper-threading and multi-core

 Virtual Machines
 Another layer of abstraction of exec entity

 Scheduling Policies/Disciplines

15

C.H. Youn (March 14, 2013)

Design Issues for Multithreading
 Thread management:

 thread creation and termination

 Thread synchronization:
 mutex, condition variable
 semaphore, reader/writer
 monitor

 Thread scheduling
 in a way similar to process scheduling

16

C.H. Youn (March 14, 2013)

Implementation
 User space implementation (green threads)

 Transparent to OS kernel
 Runtime system manages threads in userspace
 E.g. Java Runtime Enviroment

 Kernel space implementation
 Thread becomes a basic unit of OS’s resource management
 e.g. Window, Solaris, Linux

 Hardware implementation: Simultaneous Multithreading (SMT)

 Duplicate certain CPU sections (arch. states) to make a
processor appear as multiple “logical” processors

 E.g. Intel’s Hyper-Threading Technology (HTT)

17

C.H. Youn (March 14, 2013)

User Space Implementation
 Runtime system is a collection of

procedures that manage threads
 create/terminate threads, synchronization,

schedule
 RTS maintains a table per process with each

entry per thread
 thread’s registers, state, priority, etc.

 Switch threads when a thread be suspended
 switch register values
 switch stack pointer and program counter

18

C.H. Youn (March 14, 2013)

Kernel Space Implementation
 Threads are managed by kernel

 creation/termination are through system calls.
 Thread table is maintained in the kernel space

 Threads are scheduled as processes
 when a thread is blocked, the kernel run another thread

from the same proc or a different proc
 but, relatively heavier

 Solution: thread recycling (create more kernel level
threads than available processors); But

 Idle kernel threads, priority problems, deadlock
introduced by blocked kernel threads

 Kernel doesn’t know which threads to take away

19

C.H. Youn (March 14, 2013)

Pros and Cons of User Threads
 Lightweight: an order of magnitude faster than kernel

trapping (procedure call ~10ns vs system call ~5us)
 flexible in scheduling threads of a process in userspace
 Cons:

 how to implement blocking system calls
 A blocking call may stop all threads of a process
 Wrap a blocking call with a jacket: e.g. SELECT, MPI_Test()
 No true parallelism without support from kernel thread

 Information barrier between library and kernel
 A thread holding lock could be scheduled out by kernel
 A thread of high priority could be scheduled out by kernel

 Hard for time-slicing scheduling
 no clock interrupts to threads
 Java thread scheduling is left up to implementation

 round-robin in Solaris vs time-slicing in Windows
 robust code: yield or sleep()

20

C.H. Youn (March 14, 2013)

Hybrid User/kernel-Space Impl.
 M-1 model (user-level): all app-level threads map to a single kernel-level

scheduled entity. portable, easy to programming, but no concurrency
 1:1 model (kernel-level): user-level threads are in 1-1 correspondence with

schedulable entities in the kernel. Each user level thread is known to the
kernel and all threads can access the kernel at the same time but, hard to
program.

Solaris 5.2 to 5.9, NetBSD2 to 4, FreeBSD 5 and 6

Linux, Solaris 5.9 and later, NetBSD5, FreeBSD 8

21

C.H. Youn (March 14, 2013)

N-to-M Model:
 M:M model (2-level model) to minimizesprogramming effort while

reducing the cost and weight of each thread.
 Threads, Lightweight Process, Processor

 user threads over lightweight processes(lwp)
 LWP, supported by kernel-thread, over CPU

 A program can create any number of threads. It relies on user-level threads
library for scheduling. Kernel only needs to manage currently active
threads.

 But, complexity, priority inversion, suboptimal scheduling

22

C.H. Youn (March 14, 2013)

 Solaris 5.2 to 5.8, NetBSD 2 to Net BSD 4, FreeBSD 5 to 7
 Create user-level threads via library libthread
 User can specify how many LWPs should run these user-

level threads
 thr_setconcurrency(new_level) and thr_getconcurrency()

 User can bind threads to LWPs, or leave it to the library to
schedule
 unbound vs bound

 User level thread library libthread schedules the threads on
the LWPs
 preemptive scheduling: thr_setprio() and thr_getprio()

 Kernel schedules the LWPs on the available CPUs
 each LWP has a unique interval timer and alarm

M-to-M Thread Model

23

C.H. Youn (March 14, 2013)

Simultaneous Multithreading
 SMT (Hyper-threading in Pentium 4):

duplicate certain sections of the
processor, mainly those for storing the
architectural states, but not duplicating
the main execution resources
 Make it appear to OS as multiple “logical”

processors
 When the execution part is not used due to

memory stall, another task can be
scheduled for execution

 Transparent to OS and programs. But
SMP support needs to be enabled to
take advantage of HTT

 Cons: not energy efficient

RAM

CPU

24

C.H. Youn (March 14, 2013)

Multicore Architecture
 Combine 2 or more independent

cores (normally CPU) into a
single package

 Support multitasking and
multithreading in a single physical
package

25

C.H. Youn (March 14, 2013)

Hyperthreading vs Multicore

26

C.H. Youn (March 14, 2013)

Multithreading on multi-core

David Geer, IEEE Computer, 2007

27

C.H. Youn (March 14, 2013)

Virtualization

 Lecture Notes are composed with Prof. S Park’s presentation at Sogang Univ.

28

C.H. Youn (March 14, 2013)

Virtualization

Datacenter
Virtualization

Network Virtualizaiton

Server virtualization
Application
Virtualization

CPU Virtualization

Storage Virtualization

29

C.H. Youn (March 14, 2013)

Platform Virtualization

30

C.H. Youn (March 14, 2013)

Platform Virtualization
: “Multiple OS” on a Single Machine

31

C.H. Youn (March 14, 2013)

Virtual Machines:
Moving From Niche to Mainstream

Percentage of Installed x86 Workloads
Running in a VM

0%

10%

20%

30%

40%

50%

60%

2005 2006 2007 2008 2009 2010 2011 2012

2% 4%
7%

12%

19%

28%

38%

48%

• Large enterprises
started sooner —
Global 500 (G500) are
perhaps 25%
virtualized

• Small or midsize
businesses (SMBs)
started later, and tend to
be less virtualized

• SMBs are virtualizing
very fast — will exceed
G500 penetration in
2009 or 2010

32

C.H. Youn (March 14, 2013)32

What is Virtualization?

 “The abstraction of computer resources”
 A technique for hiding the

physical characteristics of
computing resources from
the way in which other
systems, applications, or end
users interact with those
resources.

33

C.H. Youn (March 14, 2013)

Benefits
 Partitioning

 Multiple applications and OSes can be supported within a single physical system.
 Servers can be consolidated into VMs on either a scale-up (scale vertically) or scale-out

(scale horizontally) architecture.
 Computing resources are treated as a uniform pool to be allocated to VMs in a controlled

manner.

 Isolation
 VMs are completely isolated from the host machine and other VMs. If a VM crashes, all

others are unaffected.
 Data does not leak across VMs and applications can only communicate over configured

network connections.

 Encapsulation
 Complete VM environment is saved as a single file; easy to backup, move and copy.
 Standardized virtualized H/W is presented to the application. – guaranteeing compatibility.

33

34

C.H. Youn (March 14, 2013)

Desktop Virtualization
 The ability to display a graphical desktop from

one computer system on another computer
system or smart display device

 Presentation Virtualization

34

 Virtual sessions
 Executing project their user interfaces

remotely
 Each session might run only a single

application, or it might present its user
with a complete desktop offering
multiple applications.

35

C.H. Youn (March 14, 2013)

Desktop Virtualization
 Advantages

 Centralized Data
 Storing safely on a central server
 Security improvement

 Examples
 Microsoft’s Remote Desktop (Thin Client)

 http://www.microsoft.com/windowsxp/using/mobility/getstarted/re
moteintro.mspx#EIB

35

 Reducing the application
managing cost

 Organizations need no longer
worry about incompatibilities
between an application and a
desktop OS.

36

C.H. Youn (March 14, 2013)

Application Virtualization
 Separating the application configuration layer from the OS

 It enables applications to run on clients without being
installed, and to be administered from a central location.

 Application virtualization makes deployment significantly
easier.

36

37

C.H. Youn (March 14, 2013)

Application Virtualization
 In a normal computing environment

 Be installed directly into the OS
 Since they all write to shared

system files, applications will
often conflict with one another.

 With application virtualization
 Run in its own protective

runtime environment, isolating
them from each other and the
underlying OS

37

38

C.H. Youn (March 14, 2013)

Application Virtualization

 Criterion
 Virtualization Target

 Library Virtualization
 High-level Language Virtualization

38

39

C.H. Youn (March 14, 2013)

Application Virtualization
– Library Virtualization

 Providing some environments of the other OS
 Mapping Guest’s API to Host’s API
 Not binary translation

 Example
 cygwin

 MS Windows → Linux
 MS Windows ← Linux
 http://www.cygwin.com/

 Wine
 Linux → MS Windows
 http://www.winehq.org/

39

Virtualized
Environment

Virtualization
Layer

Host OS

API
Translation

Guest API

Host API

40

C.H. Youn (March 14, 2013)

System Virtualization
 The ability to run an entire VM with its own (guest) OS on

another OS or on a bare-machine
 Allows multiple VMs, with heterogeneous guest OSes to run

in isolation, side-by-side on the same physical machine.
 Each VM has its own set of virtual H/W upon which a guest

OS and guest applications are loaded.
 The guest OS sees a consistent, normalized set of H/W

regardless of the actual physical H/W components.

40

H/W

Virtualization Layer

Guest OS

Guest
App.

Privileged Modes

Non-privileged Modes

Guest OS

Virtualization Layer

H/W

Host OS

Guest
App.

Guest OS

VM
Virtual H/W

Virtual H/W

VM

Virtual H/W

VM

41

C.H. Youn (March 14, 2013)

System Virtualization
 Purpose

 Several virtual servers share a single set of H/W.
 Better resource utilization
 H/W and support costs are lowered.

 Make easier to provision and reallocate servers
 Set up a server using a pre-existing template
 Shift server images from one physical server to another

to balance workloads or improve efficiency

 Provide a secure environment
 Each servers are isolated from the others.

41

42

C.H. Youn (March 14, 2013)

System Virtualization
 Criterion

 Implementation level of the VMM
 VMM can be implemented and run in an application-level, OS/Kernel

level, or hypervisor level.
 Virtual Machine Monitor (VMM)

 Create and manage logically separated virtual systems, which can
run all OSes or components on the native H/W

 Hypervisor
 On the bare hardware

 Native VM System (hypervisor level)
 Hosted VM System (application level)
 OS Extension VM System (OS/Kernel level)

42

43

C.H. Youn (March 14, 2013)

 A VM system in which the VMM operates in a privilege mode higher than the
mode of the guest VMs.
 VMM (Hypervisor)

 Executes in the highest privilege level
 Installed on the bare H/W

 Guest OS
 Installed on top of the VMM
 Run in levels of privilege lower than that of the VMM
 The privileged instructions of the guest OS are emulated by the VMM.

System Virtualization
- Native VM System

43

H/W

VMM (Hypervisor)

Guest OS

Guest
App.

Privileged Modes

Non-privileged ModesGuest OS

44

C.H. Youn (March 14, 2013)

 Criterion
 Hardware simulation method

 How handles sensitive and privileged instructions to
virtualization

 Full Virtualization
 Run unmodified guest OS

 Para-virtualization
 Guest OS should be modified

 H/W Assisted Virtualization
 Use hardware supports for virtualization
 Also called, Hardware Virtual Machine (HVM)

44

System Virtualization
- Native VM System

45

C.H. Youn (March 14, 2013)

Native VM System
- Full Virtualization

 Classical Virtualization
 Trap and Emulate

 All instructions that read or write privileged state can be made to trap
when executed in an unprivileged context.

 The VMM intercepts traps from the de-privileged guest, and
emulates the trapping instructions.

 x86 architectures are not fully virtualizable since some privileged
instructions do not generate traps when running at user-level.

45

H/W

VMM
(Hypervisor)

Guest App.

Privileged Modes

Non-privileged ModesGuest OS

Suitable Machine Code

System call

Trap Handler

Privileged Instruction

Emulate

Trap

46

C.H. Youn (March 14, 2013)

Native VM System
- Full Virtualization

 Software Virtualization
 Binary Translation

 Guest executes on an interpreter instead of directly on a physical
CPU

 Translating the privileged instruction code of the guest to non-
privileged instruction or emulating

H/W

VMM (Hypervisor)

Privileged Modes

Non-privileged Modes

Guest
OS

Guest App.

Instruction stream

Interpreter

Binary Translation

Guest
OS

Guest App.

Instruction stream

47

C.H. Youn (March 14, 2013)

Enabling unmodified OSes to run on top of the hypervisor
 Performance degradation

 Caused by trap and emulate
 Caused by binary translation
 Compared with Para-virtualization

 Example
 VMWare ESX Server

 https://publib.boulder.ibm.com/infocenter/eserver/v1r2/inde
x.jsp?topic=%2Feicaz%2Feicazxbcesx.htm

 http://www.youtube.com/watch?v=JS7u3gGKR3E
 http://www.trainsignal.com/blog/what-is-vmware-esx-

server-and-why-you-need-it

47

Native VM System
- Full Virtualization

48

C.H. Youn (March 14, 2013)

Native VM System
- Para-virtualization

 No trapping
 Hypercall

 Modified Guest OS
 The source code of the OS running in a VM may need to be

modified to communicate with the hypervisor using hypercalls.
 Hypervisor

 On top of a machine’s H/W
 Handle queuing, dispatching, and returning the results of H/W

requests from VMs

48

H/W

Hypervisor (VMM)

VM or Console
with

Administrative
Control

Para-virtualized
VM … Para-virtualized

VM

Privileged Modes

Non-privileged Modes

49

C.H. Youn (March 14, 2013)

Native VM System
- Para-virtualization

 Administrative OS
 Runs on top of the hypervisor, as do the VMs themselves
 Communicate with the hypervisor and be used to manage the VM

 VMs
 Compiled for the same H/W and instruction set as the physical machine

 Example
 Xen

 http://xen.org/

H/W

VMM
(Hypervisor)

Modified
Guest App.

Privileged Modes

Non-privileged Modes

Modified Guest OS

Suitable Machine Code

hypercall

Modified lib Execution

ISA corresponding
such hypercall

Unmodified
Guest App.

System
call

Interrupt hypercall

ISA corresponding
such hypercall

Suitable Machine Code

50

C.H. Youn (March 14, 2013)

Native VM System
- H/W assisted Virtualization

 To avoid
 Modifying guest OS of para-virtualization
 The complexity and performance problems of full virtualization

 Support virtualization in H/W

 Intel VT (aka Vanderpool) and AMD-V (aka Pacifica) processors

H/W with Virtualization Support

Hypervisor (VMM)

VM or Console
with

Administrative
Control

Para-virtualized
VM

… Unmodified
VM

• Supported by
 VMWare ESX Server
 Xen 3.0

51

C.H. Youn (March 14, 2013)

System Virtualization
- Hosted VM System

 For user convenience and implementation simplicity, it is often
advantageous to install a VM system on a host platform that is
already running an existing OS.

51

• VMM (Virtualization Application)
 Utilize the functions already

available on the host OS to control
 Manage resources desired by each of

the VMs
• Can be used when

 Source code is unavailable
 Guest OS needs licensing

agreements

VMM

H/W

Host OS

Guest
App.

Privileged Modes

Non-privileged Modes

Guest OS

VM

52

C.H. Youn (March 14, 2013)

System Virtualization
- Hosted VM System

52

 Criterion
 Hardware simulation method

 How handles sensitive and privileged instructions to
virtualization

 Full Virtualization
 Run unmodified guest Os

 Para-virtualization
 Guest OS should be modified

 H/W Assisted Virtualization
 Use hardware supports for virtualization

 Also called, Hardware Virtual Machine (HVM)

53

C.H. Youn (March 14, 2013)

Hosted VM System
- Full Virtualization

 All processes in guest OS are scheduled as one process by host OS.
 VMs run within a virtualization application.

 Virtualization Application
 Manages the VMs
 Mediates access to the H/W resources on the physical host system
 Intercepts and handles any privileged instruction issued by the

VMs
 Guest OS

 Compile for the same type of processor and instruction set as the
physical machine

 If the virtualization application can perform instruction set
translation or emulation, it can be compiled for other processors

54

C.H. Youn (March 14, 2013)

Hosted VM System
- Full Virtualization

 Binary Translation
 Scanning the running instruction stream
 For non-trapping,

 Translating the privileged instruction code of the guest to non-
privileged instruction or emulating

H/W

Host OS Privileged Modes

Non-privileged Modes

Privileged Instruction

Virtualization Application

Guest

Guest
OS

Guest App.
System call

Instruction stream

Running

Scanning

Host OS Instruction

Privileged instruction

Binary
Translation

55

C.H. Youn (March 14, 2013)

Hosted VM System
- Full Virtualization

 Criterion
 Emulating whether machine dependent or

independent

 Machine dependent emulation
 Machine independent emulation

55

56

C.H. Youn (March 14, 2013)

Full Virtualization
- Machine dependent emulation

 The virtualization application do not emulate the requests of each
VMs.

 Compile for the same type of processor and instruction set as the
physical machine

56

• Example
 VMWare Workstation

• http://www.vmware.com/produ
cts/ws/overview.html

 Microsoft Virtual Server
• http://www.microsoft.com/wind

owsserversystem/virtualserver/
 VirtualBox

• http://www.virtualbox.org

57

C.H. Youn (March 14, 2013)

Full Virtualization
- Machine independent emulation

 Providing the functionality of the target H/W completely in S/W
 Dynamic translation
 Emulating an architecture using a completely different architecture

 Example
 QEMU

 http://fabrice.bellard.free.fr/qemu/
 Emulates x86, x86_64, PowerPC, SPARC, ARM, MIPS
 Runs on Linux, Windows, Mac OS X
 Runs Linux, Solaris, Microsoft Windows, DOS, and BSD

 Bochs
 http://bochs.sourceforge.net/
 Emulates an x86 PC
 Runs on UNIX, Linux, Windows, Mac OS X, BeOS, OS/2, etc.
 Runs Linux, DOS, Windows (95, NT), MacOS X

57

58

C.H. Youn (March 14, 2013)

Hosted VM System
- Para-virtualization

 All processes in host OS and guest OSes are scheduled as processes by host OS.
 But processes running in guest have to be handled by each guest OS.

 The guest OS kernel traps and manages the requests created by its own processes.
 Example

 UML
 http://user-mode-linux.sourceforge.net/
 http://wiki.kldp.org/wiki.php/UserModeLinux

58

59

C.H. Youn (March 14, 2013)

Hosted VM System
- H/W Assisted Virtualization

 Example
 KVM
 VMWare Workstation
 Virtual PC
 MS Virtual Server

59

60

C.H. Youn (March 14, 2013)

System Virtualization
- OS Extension VM System

VMM is implemented as part of a host OS.

 Criterion
 Whether Shared kernel or not

 Kernel Virtualization
 OS-level Virtualization

60

61

C.H. Youn (March 14, 2013)

OS Extension VM System
- Kernel Virtualization

 The Linux kernel runs the VMs, just like any
other user-space process.
 Host Linux kernel

 Runs a separate version of the Linux Kernel
 In point of host OS’s view, all processes in a guest OS

are just one user process. In other word, all guest OSes
are scheduled as regular processes.

61

H/W

Linux Kernel as Hypervisor

VM … VMVM

 VM
• Has an its own OS
• Compiled for the same H/W and

instruction set as the Host Linux
kernel

62

C.H. Youn (March 14, 2013)

OS Extension VM System
- Kernel Virtualization

 Example
 KVM (Kernel Virtual Machine)

 http://ols.108.redhat.com/2007/Reprints/kivity-
Reprint.pdf

 https://help.ubuntu.com/community/KVM

62

63

C.H. Youn (March 14, 2013)

 The kernel of an OS allows for multiple isolated
user-space instances (instead of just one).
 From the point of view of its owner, such instances

(called containers) look and feel like a real server.
 chroot (change root) mechanism

 Changes the apparent disk root directory for the current
running process and its children

OS Extension VM System
- OS-level Virtualization

63

VM1 VM2 VMn
VM1

Guest
OS

VM2

Guest
OS

VMn

Guest
OS

64

C.H. Youn (March 14, 2013)

 Example
 Linux-VServer

 http://linux-vserver.org/
 ttp://www.linux.com/feature/59149

 OpenVZ/Virtuozzo
 http://openvz.org/
 http://www.parallels.com/en/products/virtuozzo/

OS Extension VM System
- OS-level Virtualization

64

65

C.H. Youn (March 14, 2013)

Hypervisor for Client Devices
• Security, Manageability and Supportability

 Virtual Appliances pre-installed with various applications
 Virtual appliances are a subset of the broader class of software

appliances -> aimed to eliminate the installation, configuration, and
maintenance costs associated with running complex stacks of
software (e.g., IDS, Malware detection, remote access, backup, etc)
(http://www.vmware.com/appliances)

 Can solve Grid computing problem -> appliances for Grid computing
(http://www.grid-appliance.org)

 Building multi-level secure systems
 Run multiple guest VMs with very controlled information flow

 Enable Bring-Your-Own-PC model
 Corporate VM; VM for web browsing; VM for banking
 Migration of VMs between datacenter and laptops for office use

66

C.H. Youn (March 14, 2013)

From Laptops and Mobiles

• Smart phones and PDAs
 Smart phones now suffer from many of the same problems as PCs
 Xen ARM

• Simple restricted use cases:
 Three VMs running on one CPU:

 Real time VM for controlling the radio
 VM for vendor/operator – supplied S/W
 VM for user-downloaded software

67

C.H. Youn (March 14, 2013)

Hypervisor for Servers
 Computing clouds (Cloud computing)

 Refers to computing resources being accessed which are typically
owned and operated by a third-party provider on a consolidated basis
in datacenter locations.

 Consumers of cloud computing services purchase computing capacity
on-demand.

 Virtualization provides dynamic infrastructure for Software as a
service (Saas).

 Example: Amazon Elastic Compute Clouds (EC2)
 Green IT computing

 Virtualization is one of the solutions to reduce the power consumption
in the datacenter environments (via consolidation or migration).
 Green Grid (http://www.thegreengrid.org/home)
 Climate Savers Computing Initiative

(http://climatesaverscomputing.org)

68

C.H. Youn (March 14, 2013)

Hypervisor for Network Virtualization

PlanetLab (http://www.planet-lab.org)
 A group of computers available as a test-bed for computer networking and

distributed systems research.
 As of June, there are 880 nodes at 460 sites worldwide.
 Each research project has a “slice” or virtual machine.
 Linux V-Server is used for the slice.

GENI – Global Environment for Network Innovations
(http://www.geni.net)
 Enhance experimental research in networking and distributed systems,

and to accelerate the transition of this research into products and services ->
Future Internet.

 Use (initially) Xen for slice.

